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1. Complex numbers

1.1 A possible motivation introducing complex numbers
Let us consider the following innocent looking equation:

x2 +1 = 0.

Its right hand side is greater than or equal to 1 for all real x. In other words, the simple quadratic
polynomial x2 +1 has no real root.

In general, a quadratic polynomial has the form

p(x) = ax2 +bx+ c,

where a,b,c are given real numbers, and a is different from zero. It is a basic fact of hight school
mathematics that if the discriminant of p

Dp = b2−4ac

Gerolamo Cardano
(1501-1576)

is less than zero, then there is no real root of p. This was one of the
reasons for the extension of the concept of real numbers in the sixteenth
century. Gerolamo Cardano, an Italian mathematician was the first who
conceived complex numbers in 1545.

Concerning the polynomial x2 + 1 we can execute the following
series of formal calculations:

x2 +1 = 0

x2 =−1

x =±
√
−1.

This shows the requisiteness of a "number" whose square is negative.
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Definition 1.1.1 — The imaginary unit i. The number i is defined by
the property

i2 =−1.

This number is called the imaginary unit.

Using this definition we can perform the following calculations

i2 +1 =−1+1 = 0

and

(−i)2 +1 = i2 +1 = 0.

This shows that ±i are the roots of x2 +1.

1.2 Operations with complex numbers in algebraic form
1.2.1 Algebraic form, real part, imaginary part

Let us start with the definition of algebraic form.

Definition 1.2.1 — Algebraic form of complex numbers. Let a and b be real numbers, then
the number

z = a+ ib

is called a complex number given in algebraic form.

The set of all complex numbers is denoted by C, that is

C := {z | z = a+ ib, a,b ∈ R }.

Definition 1.2.2 — Real part and imaginary part of complex numbers. It is conspicuous
that a complex number given in algebraic form has two main parts.

z = a︸︷︷︸
Re(z)

+i b︸︷︷︸
Im(z)

,

where Re(z) is the real part of z, and Im(z) is the imaginary part of z.

In other words, Re : C→ R and Im : C→ R are real valued functions with complex domain.
Problem 1.1 Find the real and the imaginary part of the complex numbers

z1 = 1a) z2 =−πb) z3 = ic)

z4 =−4id) z5 = 1−2ie) z6 = 3i−4f)

Solutions:
a) Re(z1) =Re(1+0 · i) = 1 and Im(z1) = Im(1+0 · i) = 0. The complex number z1 is a real

number as well, so its imaginary part is zero.
This is true in general. The set of real numbers is embedded into the set of complex numbers
with zero imaginary part. That is

R⊂ C, and Re(x) = x, Im(x) = 0,

for all x ∈ R.
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b) Taking into account the previous solution, we have Re(z2) =−π and Im(z2) = 0.
c) A complex number is called purely imaginary if its real part is zero. For example Re(z3) =

Re(0+1 · i) = 0 and Im(z3) = Im(0+1 · i) = 1, so, i is a purely imaginary number.
d) According to the third example z4 = −4i is also a purely imaginary number, which gives

Re(z4) = 0, and Im(z4) = Im(−4i) =−4.
e) Re(z5) =Re(1−2i) = 1, and Im(z5) = Im(1−2i) =−2.
f) Re(z6) =Re(3i−4) =Re(−4+3i) =−4, and Im(z6) = Im(3i−4) = Im(−4+3i) = 3.

1.2.2 Graphical representation of complex numbers on the complex plane

As we saw, a complex number has a real and an imaginary part. These can be considered as the
"coordinates" of the complex number. We just rename the axis corresponding to the situation.

More precisely, an arbitrary complex number z = a+ ib can be identified as a vector on the
plane with coordinates a, b. See figure 1.1.

In this situation the usual x-axis is called the real axis, and the usual y-axis is called the
imaginary axis. There is a one-to-one correspondence between complex numbers in algebraic
form and the points of the complex plane.

-2 -1 1 2 3

Re

-2

-1

1

2

Im

z
1
=-1+2i 

Re(z
1
)=-1

 Im(z
1
)=2

 z
2
=1.8-2.3i

Re(z
2
)=1.8

 Im(z
2
)=-2.3 

Figure 1.1: Graphical representation of complex numbers

Problem 1.2 Plot the following complex numbers and sets of complex numbers on the complex
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The set D.

plane!

z1 =−2π, z2 = 2.3+5i, z3 =
√

2i−1, z4 = 2−3i,

A = { z ∈ C | Re(z)≤ 1 }, B = { z ∈ C | Re(z) =−3 },

C = { z ∈ C | Im(z)≥−1 }, D = { z ∈ C | Im(z) =Re(z) }.

1.2.3 Addition of complex numbers in algebraic form
It is reasonable to define the sum of complex numbers like the sum of two dimensional vectors, that
is to say, let’s add the corresponding coordinates. This will really be the rule in the case of complex
numbers, as the real part of the sum will be the sum of the real parts of the summands and the
imaginary part of the sum will be the sum of the imaginary parts of the summands.

Definition 1.2.3 — Addition rule of complex numbers in algebraic form. Let z = a+ ib
and w = c+ id two given complex numbers, then their sum is defined by the following formula

z+w = (a+ c)+ i(b+d).

Problem 1.3 Find the sum z+w if

z = i−2, w = 2.1+ ia) z=−3−5i, w= 2.8+5.3ib) z = 2i+3.4, w =−1− ic)

Solutions:
a) z+w = (i−2)+(2.1+ i) =−2+2.1+ I + i =−0.1+2i,
b) z+w = (−3−5i)+(2.8+5.3i) =−3+2.8−5i+5.3i =−0.2+0.3i,
c) z+w = (2i+3.4)+(−1− i) = 3.4−1+2i− i = 2.4+ i.
Addition has the same properties as the addition of other types of numbers (e.g. real numbers,

rational numbers, integers and so on).
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Proposition 1.2.1 — Properties of addition of complex numbers. • Addition of complex
numbers

+ : C×C→ C

is a binary operation on the set of complex numbers. This means that the sum of two
complex numbers is a complex number.1

• Addition of complex numbers is associative, that is to say2

(z+w)+u = z+(w+u), for every z,w,u ∈ C.

• There exists an additive unit, the zero complex number 0 with the property

z+0 = 0+ z = z, for every z ∈ C.

• All complex numbers z have an additive inverse denoted by −z with the property

z+(−z) = (−z)+ z = 0.

• Addition of complex numbers is commutative, that is to say

z+w = w+ z, for every z,w ∈ C.

In short we called the pair (C,+) an abelian group or commutative group.3

1.2.4 Multiplication of complex numbers in algebraic form
Let z = a+ ib and w = c+ id be given complex numbers. Let us calculate the product formally
(multiply every term by every term).

zw = (a+ ib)(c+ id) = ac+aid+ ibc+ ibid = ac+ iad+ ibc+ i2︸︷︷︸
=−1

bd = ac−bd+ i(ad+bc).

Definition 1.2.4 — Multiplication rule of complex numbers in algebraic form. Let z =
a+ ib and w = c+ id two given complex numbers, then their product is defined by the following
formula

z ·w = ac−bd + i(ad +bc).

Problem 1.4 Find the product z ·w if

z = i−2, w = 2.1+ ia) z=−3−5i, w= 2.8+5.3ib) z = 2i+3.4, w =−1− ic)

Solutions:
a) zw = (i−2)(2.1+ i) = (−2) ·2.1−1 ·1+ i((−2) ·1+2.1 ·1) = −4.2−1+ i(−2+2.1) =
−5.2+0.1i,

b) zw = (−3− 5i)(2.8+ 5.3i) = (−3) · 2.8− (−5) · 5.3+ i((−3) · 5.3+(−5) · 2.8) = −8.4+
26.5+ i(−15.9−14) = 18.1−29.9i,

c) zw = (2i + 3.4)(−1− i) = 3.4 · (−1)− 2 · (−1) + i(3.4 · (−1) + 2 · (−1)) = −3.4 + 2 +
i(−3.4−2) =−1.4−5.4i.

1This is not always the case. For example subtraction is not a binary operation on the set of natural numbers
1−2 =−1, and −1 is an integer but not a natural number. We say N is not closed with respect to substraction.

2Again, not all binary operations are associative. Subtraction on Z is a binary operation, but it is not associative, e.g.
(3−2)−1 = 0 6= 2 = 3− (2−1).

3The concept of group is a central one in algebra. Other important examples are (Z,+), (R,+), and n×m matrices
with addition (this defined later in this book).
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Similarly to the case of addition, multiplication also has the same properties as multiplication
of real numbers or rational numbers. However, to construct a similar group structure like in the
case of addition we should omit zero from C.

Proposition 1.2.2 — Properties of multiplication of complex numbers. • Multiplication of
complex numbers

· : C×C→ C

is a binary operation on the set of complex numbers. This means that the product of two
complex numbers is a complex number.
• Multiplication of complex numbers is associative, that is to say

(z ·w) ·u = z · (w ·u), for every z,w,u ∈ C.

• There exists a multiplicative unit, the complex number 1 with the property

1 · z = z ·1 = z, for every z ∈ C.

• All complex numbers z, except for zero, have a multiplicative inverse denoted by 1
z or z−1

with the property

z · 1
z
= 1.

• Multiplication of complex numbers is commutative, that is to say

z ·w = w · z, for every z,w ∈ C.

As we see (C\{0}, ·) constitutes an abelian group.
Henceforward, if there is no ambiguity we skip the dot for denoting multiplication, so we use

the notation zw for the product of z and w instead of z ·w.

Multiplicative inverse and division

Analogously to real numbers, if z is an arbitrary non-zero complex number, there is a complex
number, denoted by z−1 or 1

z , such that

z · z−1 = 1.

Proposition 1.2.3 Let z = a+ ib be a given non-zero complex number, then

1
z
=

a
a2 +b2 − i

b
a2 +b2 .

Proof.

z · 1
z
= (a+ ib)

(
a

a2 +b2 − i
b

a2 +b2

)
=

a2

a2 +b2 +
b2

a2 +b2 − i
ab

a2 +b2 + i
ab

a2 +b2 =
a2 +b2

a2 +b2 = 1.

�

In practice, we use the the following trick to calculate a ratio of two complex numbers given in
algebraic form.
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� Example 1.1

1+ i
2−3i

=
1+ i

2−3i
2+3i
2+3i

=
(1+ i)(2+3i)
(2−3i)(2+3i)

=
−2+5i

13
=− 2

13
+

5i
13

.

Here we used the fact that z · z is always real.4 In this way we can avoid division by complex
numbers. �

Problem 1.5 Find the multiplicative inverse of z, where

z = 1− i,a) z = 2i+1b)

Solutions:

z = 1− i, so a = 1, b =−1, and

1
z
=

1
12 +(−1)2 − i

−1
12 +(−1)2 =

1
2
+

1
2

i.

a)

z = 2i+1, so a = 1, b = 2, and

1
z
=

1
12 +22 − i

2
12 +22 =

1
5
− 1

5
i.

b)

Problem 1.6 Find the ratio of z and w, where

z = 1−4i w = 8i−2,a) z = 11i+1, w = 9+2i.b)

Solutions:

1−4i
−2+8i

=
1−4i
−2+8i

· −2−8i
−2−8i

=
(1−4i)(−2−8i)

4+64
=
−34
68

=−1
2
.

a)

1+11i
9+2i

=
1+11i
9+2i

· 9−2i
9−2i

=
(1+11i)(9−2i)

81+4
=

31+97i
85

=
31
85

+
97
85

i.

b)

Connection between multiplication and addition
In the light of the similarity between addition and multiplication of complex and e.g. real numbers,
we can expect an akin connection between multiplication and addition of complex numbers like
concerning real numbers. Our requirement is correct. This connection is called distributivity.

Proposition 1.2.4 — Distributivity law. For every z,w,u ∈ C we have

(z+w)u = zu+wu.
4See the definition and properties of complex conjugate z̄ in subsection 1.2.5



12 Chapter 1. Complex numbers

If a set is endowed with two binary operations like the set of complex numbers (abelian group
with respect to both operations, and the distributivity law connects the two operations), then it is
said to be a field.5

1.2.5 Conjugate of complex numbers

Up till now we saw the similarities between complex and e.g. real numbers. Addition, multiplication,
and machinery of calculations do not essentially differ in the mentioned situations.

Here is the firs essential difference between these sets of numbers.
Definition 1.2.5 — Complex conjugate. Let z∈C be given in algebraic form z = a+bi, then
the number

z̄ = a−bi

is said to be the conjugate of z.

Geometrically conjugation is the reflection with respect to the real-axis on the complex plane, see
Figure 1.4. Conjugation changes the sign of the imaginary part and leaves the real part untouched.

-2 -1 1 2 3

Re

-2

-1

1

2

Im

z
1

z
1
 conjugate

z
2

z
2
 conjugate

z
3
=z

3
 conjugate

Figure 1.4: Complex numbers and their conjugates

Proposition 1.2.5 — Properties of conjugation of complex numbers. • The conjugate of

5This concept is another very important one in algebra. Other important examples are the field of real numbers, the
field of rational numbers, and finite fields e.g. integers modulo p, where p is a prime.
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a real number is a real number.6

x̄ = x, for every x ∈ R.

• Conjugation is an idempotent (unary) operation. In other words, double conjugation has no
effect.

¯̄z = z, for every z ∈ C.

• Conjugate of a sum is the sum of the conjugates of the summands.

z+w = z̄+ w̄, for every z,w ∈ C.

• Conjugate of a product is the product of the conjugates.

z ·w = z̄ · w̄, for every z,w ∈ C.

• A complex number multiplied by its conjugate always results a real number. More precisely
it results the sum of the squares of the real and the imaginary parts.7

zz̄ = (Rez)2 +(Imz)2, for every z ∈ C.

Problem 1.7 Find the conjugate of z, w, z−w, z+w, and zw, where

z = 1+
1
2

i and w = 0.2−4i.

Solution: Because z and w are given in different forms, at first we have to transform for
example z into decimal form: z = 1+0.5i. Now we can start the calculation.

z = 1+0.5i = 1−0.5i, w = 0.2−4i = 0.2+4i,

z−w = (1+0.5i)− (0.2−4i) = 1−0.2+ i(0.5+4) = 0.8+4.5i = 0.8−4.5i,

z+w = (1+0.5i)+(0.2−4i) = 1+0.2+ i(0.5−4) = 1.2−3.5i = 1.2+3.5i,

zw = (1+0.5i)(0.2−4i) = 0.2+2+ i(−4+0.1) = 2.2−3.9i = 2.2+3.9i.

1.3 Polar form and exponential form of complex numbers
As we have seen, a complex number can be considered as a vector on the complex plane.

A vector on the plane is determined uniquely by its coordinates, but this is not the only
possibility.

A motivation to look for a new approach can be the laborious calculation of high powers. A
simple way of calculating the powers is not the sole advantage of the new approach, easy calculation
of ratios and roots are important as well.

Let z = a+ ib be a complex number. We can identify it by the vector from the origin to the point
(a,b). This vector is also determined uniquely by its length and by its angle (counterclockwise)
between the real axis and the vector.

1.3.1 Length and angle of complex numbers

6Actually, this is the real axis, which is also the axis of the mentioned reflection which remains fixed during the
reflection process. This is why real numbers remain untouched by conjugation.

7As a matter of fact, this is the square of the length of the complex number z. See subsection 1.3.1.
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Definition 1.3.1 — The length of complex numbers. Let z = a+ ib be a given complex
number, then the quantity

|z|=
√

a2 +b2 =
√
(Rez)2 +(Imz)2

is said to be the length of z.

This definition comes from Pythagoras’ theorem.

Proposition 1.3.1 — Properties of the length of complex numbers. Let z,w ∈ C be arbitrary,
then
• the length z is always non-negative, and it is zero if and only if z = 0;
• the length of the product is the product of the lengths, that is

|zw|= |z||w|;

• the length of a sum is always less than or equal the sum of the lengths, that is

|z+w| ≤ |z|+ |w|, triangle-inequality;

• the length of a real number equals to its absolute value;
• taking the square root of the product, a complex number multiplied by its conjugate results

the length too, that is

|z|=
√

zz̄.

Problem 1.8 Calculate the length of the following complex numbers

z1 =−1a) z2 = 3ib) z3 = 1− ic) z4 =−1−2id)

Solutions:

Because z1 is a real number its length equals to its absolute value: |z1|= 1,a)

z2 is purely imaginary, so its length equals to the absolute value of its imaginary part: |z2|= 3,b)

|z3|=
√

12 +(−1)2 =
√

1+1 =
√

2,c)

|z3|=
√
(−1)2 +(−2)2 =

√
1+4 =

√
5.d)

It seems to be straightforward (according to the figure 1.5) to use the arctan function for the
definition of the angle of complex numbers. However, the situation is a little bit more complicated
because of the range of arctan.

Firstly, we cannot assign an angle to the zero complex number.
Important remark: z = 0 has no angle, this entails it has no polar form!
Secondly, the angle depends on the position of the complex number. Namely, it is important

to know in which quarter it is. The mazy appearance of the definition is the consequence of this
second observation.

Definition 1.3.2 — The angle of complex numbers. Let z = a+ ib 6= 0 be a given complex
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number, then the quantity

ϕz =



arctan
(b

a

)
, if a > 0 and b≥ 0

arctan
(b

a

)
+2π, if a > 0 and b < 0

arctan
(b

a

)
+π, if a < 0 and b≥ 0

arctan
(b

a

)
+π, if a < 0 and b < 0

π

2 if a = 0 and b > 0
3π

2 if a = 0 and b < 0

is said to be the angle of z.

-2 -1 1 2 3 4

-2

-1

1

2

z

Im(z)

Re(z)

|z|

Figure 1.5: The length and angle of z

Important remark: The angle is always greater than, or equal to zero and less than 2π . If it is
outside of this range after a certain calculation, then it is necessary to take the angle modulo 2π .
We will see examples for this in Subsection 1.3.2.
Problem 1.9 Calculate the angle of the following complex numbers

z1 =−1a) z2 = 3ib) z3 = 1− ic)

z4 =−1−
√

3id) z5 =−ie) z6 = 1+ if)

Solutions:
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-1 -0.5 0.5 1 1.5 2

-1

-0.5

0.5

1

|z|

cos( )
sin( )

z=|z|(cos( )+isin( ))

Figure 1.6: Polar form of z

z1 =−1+0 · i, so a < 0, and b≥ 0. This is the third case, where the rule is

ϕz = arctan
b
a
+π = arctan0+π = π.

a)

z2 = 0+3i, so a = 0, and b > 0. This is the fifth case, where the rule is

ϕz =
π

2
.

b)

z3 = 1+(−1) · i, so a > 0, and b < 0. This is the second case, where the rule is

ϕz =
b
a
+2π = arctan

1
−1

+2π = arctan(−1)+2π =
−π

4
+2π =

7π

4
.

c)

z4 =−1+(−
√

3) · i, so a < 0, and b < 0. This is the fourth case, where the rule is

ϕz = arctan
(

b
a

)
+π = arctan

(
−1
−
√

3

)
+π = arctan

(
1√
3

)
+π =

π

3
+π =

4π

3
.

d)
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z5 = 0+(−3) · i, so a = 0, and b < 0. This is the sixth case, where the rule is

ϕz =
3π

2
.

e)

z6 = 1+1 · i, so a > 0, and b≥ 0. This is the first case, where the rule is

ϕz = arctan
(

b
a

)
= arctan

(
1
1

)
= arctan(1) =

π

4
.

f)

Definition 1.3.3 — The polar form of complex numbers. Let z 6= 0 be a given complex
number its length is denoted by |z| and its angle is denoted by ϕz, then it can be written in the
form

z = |z|(cosϕz + isinϕz)

which is said to be the polar form of z.

Problem 1.10 Find the polar form of the following complex numbers

z1 =−5a) z2 = 11ib) z3 = 2
√

3+2ic) z4 =−1.2−0.4id)

Solutions:
a) z1 is real, so its length equals to its absolute value.

|z1|= |−5|= 5.

Its real part is negative and its imaginary part is zero. This is the third case. So its angle is

ϕz1 = arctan
(

0
−5

)
+π = arctan(0)+π = 0+π = π.

The polar form of z1 is

z1 = 5(cosπ + isinπ).

b) z2 is purely imaginary, so its length is the absolute value of its imaginary part.

|z2|= |11|= 11.

Its real part is zero and its imaginary part is positive. This is the fifth case. So its angle is

ϕz2 =
π

2
.

The polar form of z2 is

z2 = 11
(

cos
π

2
+ isin

π

2

)
.
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c) Both the real and the imaginary parts of z3 are different from zero, so its length is the square
root of the sum of the squares of its real and imaginary parts.

|z3|=
√

(2
√

3)2 +22 =
√

12+4 =
√

16 = 4.

Both the real and imaginary parts are positive. This is the first case. So its angle is

ϕz3 = arctan
(

2
2
√

3

)
= arctan

(
1√
3

)
=

π

6
.

The polar form of z3 is

z3 = 4
(

cos
π

3
+ isin

π

3

)
.

d) Both the real and the imaginary parts of z4 =−1.2−0.4i are different from zero, so its length
is the square root of the sum of the squares of its real and imaginary parts.

|z4|=
√

(−1.2)2 +(−0.4)2 =
√

1.44+0.16 =
√

1.6≈ 1.2649.

Here we have only an approximate value of the length.
Both the real and imaginary parts are negative. This is the fourth case. So its angle is

ϕz4 = arctan
(
−0.4
−1.2

)
= arctan

(
1
3

)
≈ 0.3218︸ ︷︷ ︸

in radian

≈ 18.4349◦.

Again, we have only an approximate value of the angle.8

The (approximate) polar form of z4 is

z4 ≈ 1.2649(cos(18.4349◦)+ isin(18.4349◦)) .

1.3.2 Calculation with complex numbers in polar form
As it has been mentioned, algebraic form fits well for addition and subtraction of complex numbers,
however, it is clumsy and tiresome to calculate the product of numerous complex numbers or to
raise a complex number to a hight power.

Polar form fits perfectly well for these operations.

Taking an angle modulo 2π

Let us consider the angle 13π

3 . This is greater than 2π = 6π

3 . The main point is that it is outside of
the interval [0,2π[.

If we get an angle like this after some calculations with complex numbers, it is necessary to
take it modulo 2π .

Let us see how it works in practice.

13π

3
=

π

3
+

12π

3
=

π

3
+2 ·2π, that is

13π

3
≡ π

3
mod 2π.

So we use π

3 instead of 13π

3 .
In general, if ϕ 6∈ [0,2π[, then there is a unique integer k ∈ Z and an angle ψ ∈ [0,2π[ such that

ϕ = ψ + k ·2π,

8For the numerical calculation one can use a calculator or any kind of mathematical software. For example for the
conversion of radians into degrees one can use the command rad2deg in Matlab.
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which is denoted by

ϕ ≡ ψ mod 2π,

and we say that ϕ is congruent to ψ modulo 2π .9
If the angle is given in degree instead of radian, one can use mod 360◦ instead of mod 2π .

Problem 1.11 Find the angle ψ such that ϕ ≡ ψ mod 2π and ψ ∈ [0,2π[, where

ϕ = 23π

5 ,a) ϕ = −11π

2 ,b) ϕ = −π

4 ,c) ϕ = 12π ,d) ϕ = 13π

2 .e)

Solutions:

ϕ =
23π

5
=

3π +4 ·5π

5
=

3π

5
+4π =

3π

5
+2 ·2π ≡ 3π

5
mod 2π,

a)

ϕ =
−11π

2
=−3π +4 ·2π

2
=−3π

2
−2 ·2π ≡−3π

2
mod 2π ≡ π

2
mod 2π,

b)

ϕ =
−π

4
≡ 3π

2
mod 2π,

c)

ϕ = 12π = 0+6 ·2π ≡ 0 mod 2π,

d)

ϕ =
13π

2
=

π +6 ·2π

2
=

π

2
+3 ·2π ≡ π

2
mod 2π.

e)

Multiplication and raising to a power
A reminder from high-school: We will need the following two trigonometric identities. If α and
β are angles then

cosα cosβ − sinα sinβ = cos(α +β ), and cosα sinβ + cosβ sinα = sin(α +β ).

9The 12 hour clock is a good analogy which can help to understand this concept. This clock uses arithmetic modulo
12.
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Theorem 1.3.2 — Multiplication of complex numbers in polar form. Let z = |z|(cosϕz +
isinϕz) and w = |w|(cosϕw + isinϕw) be given non-zero complex numbers, then

zw = |z||w|(cosψ + isinψ), where (ϕz +ϕw)≡ ψ mod 2π.

Proof. Let z = |z|(cosϕz + isinϕz) and w = |w|(cosϕw + isinϕw) be the given non-zero complex
numbers, then

zw = |z|(cosϕz + isinϕz)|w|(cosϕw + isinϕw) =

= |z||w|(cosϕz cosϕw− sinϕz sinϕw + i(cosϕz sinϕw + cosϕw sinϕz)) =

= |z||w|(cos(ϕz +ϕw)+ isin(ϕz +ϕw)).

�

Using the previous theorem, it is easy to derive now the rule of raising to a power if the exponent is
a natural number. Indeed, if n ∈ N and z ∈ C, then

zn = z · · ·z︸︷︷︸
n times

,

which allows us the recursive application of the previous definition of multiplication. Let n ∈ N be
a given natural number, then

zn = z · z · · ·z︸ ︷︷ ︸
n times

= |z|(cosϕz + isinϕz) · · · |z|(cosϕz + isinϕz)︸ ︷︷ ︸
n times

= |z|n(cos(nϕz)+ isin(nϕz)).

The only thing we have to take care of is the angle nϕz. If nϕz 6∈ [0,2π[, then it is necessary to
substract or add 2π as many times to nϕz till the result will be in the required interval [0,2π[ (take
the angle mod 2π). Actually, we have proved the following theorem.

Theorem 1.3.3 — Raising to a power of complex numbers in polar form. a Let z ∈ C,
z = |z|(cosϕz + isinϕz and n ∈ N, then

zn = |z|n(cosψ + isinψ), where ψ ≡ nϕz mod 2π.

aThis theorem is also known as de Moivre’s theorem or de Moivre’s formula named after a French mathematician
Abraham de Moivre.

� Example 1.2 Let z = 2(cos π

2 + isin π

2 ) and n = 10, then

z10 = 210
(

cos
(

10
π

2

)
+ isin

(
10

π

2

))
= 210 (cos(5π)+ isin(5π)) =

= 1024(cos(π +2 ·2π)+ sin(π +2 ·2π)) = 1024(cos(π)+ sin(π))

�

Problem 1.12 Find the product zw and the power zn, where

z = 2
(
cos
(

π

11

)
+ isin

(
π

11

))
, w = 5

(
cos
(3π

5

)
+ isin

(3π

5

))
, n = 10.a)

z = 3
(
cos
(17π

10

)
+ isin

(17π

10

))
, w =−2

(
cos
(

π

7

)
+ isin

(
π

7

))
, n = 5.b)

Solutions:
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zw = 2 ·5
(

cos
(

π

11
+

3π

5

)
+ isin

(
π

11
+

3π

5

))
=

= 10
(

cos
(

5π +33π

55

)
+ isin

(
5π +33π

55

))
= 10

(
cos
(

38π

55

)
+ isin

(
38π

55

))
,

z10 = 210
(

cos
(

10
π

11

)
+ isin

(
10

π

11

))
= 1024

(
cos
(

10π

11

)
+ isin

(
10π

11

))
.

a)

zw = 3 · (−2)
(

cos
(

17π

10
+

π

7

)
+ isin

(
17π

10
+

π

7

))
=

=−6
(

cos
(

119π +10π

70

)
+ isin

(
119π +10π

70

))
=

−6
(

cos
(

189π

70

)
+ isin

(
189π

70

))
=

=−6
(

cos
(

49π +70 ·2π

70

)
+ isin

(
49π +70 ·2π

70

))
=

−6
(

cos
(

49π

70
+2π

)
+ isin

(
49π

70
+2π

))
=−6

(
cos
(

49π

70

)
+ isin

(
49π

70

))

z5 = 35
(

cos
(

5
17π

10

)
+ isin

(
5

17π

10

))
= 243

(
cos
(

85π

10

)
+ isin

(
85π

10

))
=

= 243
(

cos
(

5π +40 ·2π

10

)
+ isin

(
5π +40 ·2π

10

))
=

= 243
(

cos
(

5π

10
+4 ·2π

)
+ isin

(
5π

10
+4 ·2π

))
= 243

(
cos
(

π

2

)
+ isin

(
π

2

))
.

b)

Division of complex numbers in polar form

Theorem 1.3.4 Let z = |z|(cosϕz + isinϕz) and w = |w|(cosϕw + isinϕw) be given non-zero
complex numbers, then

z
w
=
|z|
|w|

(cosψ + isinψ), where (ϕz−ϕw)≡ ψ mod 2π.

Proof. Using the "reminder from high-school" trigonometric identities from the beginning of the
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previous subsection we get

z
w
=
|z|
|w|

cosϕz + isinϕz

cosϕw + isinϕw
=
|z|
|w|

cosϕz + isinϕz

cosϕw + isinϕw
· cosϕw− isinϕz

cosϕ−isinϕw
=

=
|z|
|w|

cosϕz cosϕw + sinϕz sinϕw + i(−cosϕz sinϕw + cosϕw sinϕz)

(cosϕw)2 +(sinϕw)2 =

|z|
|w|

(cos(ϕz−ϕw)+ isin(ϕz−ϕw)).

�

Problem 1.13 Find the ratio z
w , where

z = 3(cosπ + isinπ), w = 6
(

cos
π

2
+ isin

π

2

)
,

a)

z = 12
(

cos
3π

10
+ isin

3π

10

)
, w = 3

(
cos

π

5
+ isin

π

5

)
.

b)

Solutions:

z
w
=

3
6

(
cos
(

π− π

2

)
+ isin

(
π− π

2

))
=

1
2

(
cos

π

2
+ isin

π

2

)
,

a)

z
w
=

12
3

(
cos
(

3π

10
− π

5

)
+ isin

(
3π

10
− π

5

))
= 4

(
cos

π

10
+ isin

π

10

)
.

b)

nth roots
Reminder from high school: Let a ∈ R, n ∈ N be given numbers and we are looking for a real
number x which is a solution of the equation

xn = a.

If a is negative, then n is assumed to be odd. Every real number has a unique odd nth root, and
every non-negative real number has a unique even nth root. E.g. there is no real square root of −2.

The situation in the case of complex numbers is totally different. All non-zero complex numbers
have n different nth roots. This is not surprising in the light of the raising to a power rule (see.
Theorem 1.3.3), because there are exactly n different angles in the interval [0,2π[ which multiplied
by n will be congruent to a given angle ϕ modulo 2π . Actually these are

ϕ

n
+ k

2π

n
, k = 0,1, . . . ,n−1.
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Indeed,

n
(

ϕ

n
+ k

2π

n

)
= ϕ + k ·2π ≡ ϕ mod 2π, k = 0,1, . . . ,n−1.

Using this and Theorem 1.3.3 we immediately get the following statement.

Theorem 1.3.5 — nth roots of complex numbers. Let z = |z|(cosϕz + isinϕz) be a complex
number and n ∈N be a natural number greater than or equal to 2. Then z has n different complex
nth roots ζk, k = 0,1, . . . ,n−1, which are given by the formula

ζk =
n
√
|z|
(

cos
(

ϕz

n
+ k

2π

n

)
+ isin

(
ϕz

n
+ k

2π

n

))
, k = 0,1, . . . ,n−1.

Geometrically this means that we take a vector with nth root length of the original vector and
we also divide the angle of the original vector by n. This results ζ0. Now we rotate ζ0 by 2π

n , and
we have ζ1, we rotate ζ1 by the same angle, and so on. We repeat this process n−1 times, at last
we get ζn−1.

� Example 1.3 Let z = 16
(
cos π

3 + isin π

3

)
. Find the fourth roots of z.

Solution: We will have four fourth roots. Let’s use the formula from the previous theorem.

ζ0 =
4
√

16
(

cos
( π

3
4
+0 · 2π

4

)
+ isin

( π

3
4
+0 · 2π

4

))
= 2

(
cos
(

π

12

)
+ isin

(
π

12

))
,

ζ1 =
4
√

16
(

cos
( π

3
4
+1 · 2π

4

)
+ isin

( π

3
4
+1 · 2π

4

))
= 2

(
cos
(

7π

12

)
+ isin

(
7π

12

))
,

ζ2 =
4
√

16
(

cos
( π

3
4
+2 · 2π

4

)
+ isin

( π

3
4
+2 · 2π

4

))
= 2

(
cos
(

13π

12

)
+ isin

(
13π

12

))
,

ζ3 =
4
√

16
(

cos
( π

3
4
+3 · 2π

4

)
+ isin

( π

3
4
+3 · 2π

4

))
= 2

(
cos
(

19π

12

)
+ isin

(
19

π

12

))
�

-2 2 4 6 8 10 12 14

-2

2

4

6

8
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12

14 z

0

1

2

3

Figure 1.7: Fourth roots of z

Problem 1.14 Find the nth roots of z, where



24 Chapter 1. Complex numbers

z = 27(cosπ + isinπ), n = 3,a)

z = 32
(
cos 2π

5 + isin 2π

5

)
, n = 4,b)

z = cos 3π

7 + icos 3π

7 , n = 5.c)

Solutions:

The length of z is 27, so the length of the third roots will be 3
√

27 = 3 and the rotation angle
will be 2π

3 .

ζ0 = 3
(

cos
(

π

9
+0 · 2π

3

)
+ isin

(
π

9
+0 · 2π

3

))
= 3

(
cos
(

π

9

)
+ isin

(
π

9

))
,

ζ1 = 3
(

cos
(

π

9
+1 · 2π

3

)
+ isin

(
π

9
+1 · 2π

3

))
= 3

(
cos
(

7π

9

)
+ isin

(
7π

9

))
,

ζ2 = 3
(

cos
(

13π

9

)
+ isin

(
13π

9

))
= 3

(
cos
(

13π

9

)
+ isin

(
13π

9

))
.

a)

The length of z is 32, so the length of the fourth roots will be 4
√

32 = 2 4
√

2 and the rotation
angle will be 2π

4 = π

2 .

ζ0 = 2 4
√

2
(

cos
(

2π

20
+0 · π

2

)
+ isin

(
2π

20
+0 · π

2

))
= 2 4
√

2
(

cos
π

10
+ isin

π

10

)
,

ζ1 = ζ0 = 2 4
√

2
(

cos
(

π

10
+1 · π

2

)
+ isin

(
π

10
+1 · π

2

))
= 2 4
√

2
(

cos
6π

10
+ isin

6π

10

)
,

ζ2 = ζ0 = 2 4
√

2
(

cos
(

π

10
+2 · π

2

)
+ isin

(
π

10
+2 · π

2

))
= 2 4
√

2
(

cos
11π

10
+ isin

11π

10

)
,

ζ3 = ζ0 = 2 4
√

2
(

cos
(

π

10
+3 · π

2

)
+ isin

(
π

10
+3 · π

2

))
= 2 4
√

2
(

cos
16π

10
+ isin

16π

10

)
.

b)
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The length of z is 1, so the length of the third roots will be 5
√

1 = 1 and the rotation angle
will be 2π

5 .

ζ0 = cos
(

3π

35
+0 · 2π

5

)
+ isin

(
3π

35
+0 · 2π

5

)
=

(
cos

3π

35
+ isin

3π

35

)
,

ζ1 = cos
(

3π

35
+1 · 2π

5

)
+ isin

(
3π

35
+1 · 2π

5

)
=

(
cos

17π

35
+ isin

17π

35

)
,

ζ2 = cos
(

3π

35
+2 · 2π

5

)
+ isin

(
3π

35
+2 · 2π

5

)
=

(
cos

31π

35
+ isin

31π

35

)
,

ζ3 = cos
(

3π

35
+3 · 2π

5

)
+ isin

(
3π

35
+3 · 2π

5

)
=

(
cos

45π

35
+ isin

45π

35

)
,

ζ4 = cos
(

3π

35
+4 · 2π

5

)
+ isin

(
3π

35
+4 · 2π

5

)
=

(
cos

59π

35
+ isin

59π

35

)
.

c)

nth roots of unity
The nth roots of 1 have a special importance, in particular in applications. For example in the
calculation of Fast Fourier Transform, which is an important tool in image processing and signal
processing.

It is also used in many branches of mathematics like number theory and group theory.
Because of its relevance, this small subsection is devoted to this topic.

Definition 1.3.4 — nth root of unity. Let n ∈ N be a natural number. A complex number z is
called an nth root of unity if it fulfils the following equation:

zn = 1.

It is easy to check that the nth roots of unity have the form given by the theorem below.

Theorem 1.3.6 Let n ∈ N be a natural number. A complex number z is an nth root of unity if
and only if it can be written in the following form

z = cos
2kπ

n
+ isin

2kπ

n
,

where k is one of the elements of the set {0,1, . . . ,n−1}.

The conventional notation in the literature for the nth roots of unity is εk instead of ζk.

Theorem 1.3.7 Let n ∈ N be a natural number, then the set of nth roots constitute an Abelian
group with respect to multiplication.

� Example 1.4 Let us consider the fourth roots of unity

εk = cos
2kπ

n
+ isin

2kπ

n
, k = 0,1,2,3.

It is easy to find their algebraic form too:

ε0 = 1, ε1 = i, ε2 =−1, ε3 =−i.
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Then

ε
0
1 = ε0, ε

1
1 = ε1, ε

2
1 = ε2, ε

3
1 = ε3, and ε

0
3 = ε0, ε

1
3 = ε3, ε

2
3 = ε2, ε

3
3 = ε1.

So, all the fourth roots of unity can be derived either as the powers of ε1 or ε3. They cannot be
written as the powers of ε0 or ε2.

This is always the case if n and k are coprime, that is to say, their greatest common divisor is
one. �

Definition 1.3.5 — Primitive nth roots of unity. Let n ∈ N be a given natural number. An nth
root of unity εk is called a primitive nth root of unity if gcd(n,k) = 1a.

agcd denotes the greatest common divisor of n and k. For example, gcd(12,9) = 3. So, 12 and 9 are not coprimes.

Problem 1.15
Find the sixth roots of unity and the primitive sixth roots of unity.a)

What is the sum of the third roots of unity?b)

Solutions:

ε0 = 1, ε1 = cos 2π

6 + isin 2π

6 = cos π

3 + isin π

3

ε2 = cos
4π

6
+ isin

4π

6
= cos

2π

3
+ isin

2π

3
, ε3 = cos 6π

6 + isin 6π

6 = cosπ + isinπ

ε4 = cos
8π

6
+ isin

8π

6
= cos

4π

3
+ isin

4π

3
, ε5 = cos 10π

6 + isin 10π

6 = cos 5π

3 + isin 5π

3 .

The primitive sixth roots of unity are: ε1, and ε5.

a)

The third roots of unity are ε0,ε1 and ε2. All can be written as a power of ε1. Using the
formula for the sum of the first n member of a geometric series10 we have

ε0 + ε1 + ε2 = ε
0
1 + ε

1
1 + ε

2
1 =

ε3
1

ε1−1
=

1−1
ε1−1

= 0.

Actually, a pretty similar calculation shows that the sum of the nth roots of unity is zero for
an arbitrary n≥ 2.

b)

1.3.3 Euler’s formula
Reminder from Calculus: It is known from the theory of infinite series, that the complex exponen-
tial function, the complex sine function and the complex cosine function can be defined as infinite
series in the following way:

ez =
∞

∑
n=0

zn

n!
, sinz =

∞

∑
n=0

(−1)n z2n+1

(2n+1)!
, cosz =

∞

∑
n=0

(−1)n z2n

(2n)!
.

Leonhard Euler
(1707-1783)

It is also a well known fact from calculus that absolutely convergent
series can be added term by term. This will be used in the proof of the
following nice theorem of Euler.
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Theorem 1.3.8 — Euler’s identity. Let ϕ be an angle (a real number),
then

eiϕ = cosϕ + isinϕ.

Proof. Here we use the periodicity of the powers of the imaginary unit i

i0 = 1, i1 = i, i2 =−1, i3 =−i,

i4 = 1, i5 = i, i6 =−1, i7 =−i,

i8 = 1, i9 = i, i10 =−1, i11 =−i,

· · · · · · · · · · · · · · · · · · · · · · · ·

eiϕ =
∞

∑
n=0

(iϕ)n

n!
= i0

ϕ0

0!
+ i1

ϕ1

1!
+ i2

ϕ2

2!
+ i3

ϕ3

3!
+ i4

ϕ4

4!
+ i5

ϕ5

5!
+ · · ·=(

(−1)0 · ϕ
0

0!
+(−1)1 · ϕ

2

2!
+(−1)2 · ϕ

4

4!
+(−1)3 · ϕ

6

6!
+ · · ·

)
+

i
(
(−1)0 · ϕ

1

1!
+(−1)1 · ϕ

3

3!
+(−1)2 · ϕ

5

5!
+(−1)3 · ϕ

7

7!
+ · · ·

)
=

∞

∑
n=0

(−1)n ϕ2n

(2n)!
+ i

∞

∑
n=0

(−1)n z2n+1

(2n+1)!
= cosϕ + isinϕ.

�

1.3.4 Calculation with complex numbers in exponential form
With the help of Euler’s identity one can write a complex number in a very compact form.

z = |z|(cosϕz + isinϕz)︸ ︷︷ ︸
eiϕz

= |z|eiϕz .

Definition 1.3.6 — Exponential form of complex numbers. Let z be a non-zero complex
number with angle ϕz, then the form

z = |z|eiϕz

is said to be the exponential form of z.

All the calculation rules are easy consequences of this definition and the calculation rules of complex
number in polar form.

� Example 1.5 Let z = 2eiπ and w = 3ei π

3 , then

zw = 2eiπ ·3ei π

3 = 6ei(π+ π

3 ) = 6ei( 4π

3 ),
z
w
=

2
3

ei(π− π

3 ) =
2
3

ei( 2π

3 ),

and

z10 = 210ei10π = 1024ei·0 = 1024.

�
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1.4 Exercises
Exercise 1.1 Find the algebraic form of the following expressions!

(2− i)(3− i)a) (3+7i)(2+ i)b) (i−2)(i+2)c) (2+2i)(3+ i)id)

3−i
1+ie) −1−i

1−4if) 3+i
(2+3i)(1+i)g)

�

Exercise 1.2 Find x and y which fulfil the equation

(1+2i)x+(1−3i)y = 2+ i.

�

Exercise 1.3 Simplify the following expressions!

(1+ i)3− (1+ i)3a) i+3
2i−1 +

5+3i
3−ib) i1023c)

�

Exercise 1.4 Find the length, the angle and the polar form of the following complex numbers!
√

3−3ia) 5b) −3c) −4id)

−1−
√

3e) 6+6if) 9ig) i−1h)

�

Exercise 1.5 Give z, w, zw and z
w in polar form!

z = 10i , w = 1+
√

3i.a) z =−
√

32+2i , w = 1− i.b)

�

Exercise 1.6 Find the angle of 7−24i rounding it to four decimal places! �

Exercise 1.7 We know the length 10 and the angle π

4 of z. Find the value of Re(z) and Im(z)!
�

Exercise 1.8 Simplify the following expressions!

(
cos

5π

13
+ isin

5π

13

)(
cos

7π

11
+ isin

7π

11

)a) (
cos

2π

5
+ isin

2π

5

)9

b)
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(
cos

2π

3
+ isin

2π

3

)(
cos

7π

12
+ isin

7π

12

)c) (
cos

5π

22
+ isin

5π

22

)11

d)

cos 5π

3 + isin 5π

3

cos 6π

5 + isin 6π

5

e)

cos 2π

9 + isin 2π

9

cos 11π

7 + isin 11π

7

f)

(
cos

5π

22
+ isin

5π

22

)−3

g) (
cos

π

2
+ isin

π

2

)−4

h)

�

Exercise 1.9 Solve the following equations!

z2−2z+2 = 0a) z2−6z+10 = 0b)

4z2−4z+5 = 0c) 2z2 +3z+2 = 0d)

z2− z+1 = 0e) z2−4z+13 = 0f)

z2− (1+2i)z+ i−1 = 0g) z2− (8−3i)z+11−27i = 0h)

�

Exercise 1.10 Find the fourth roots of z = 2−
√

12i! �

Exercise 1.11 Find the fifth roots of z = 1− i! �

Exercise 1.12 Find the sixth roots of z = i! �

Exercise 1.13 Find the sixth roots of unity and the primitive sixth roots of unity! �

Exercise 1.14 Find the twenty-fourth roots of unity and the primitive twenty-fourth roots of
unity! �

Exercise 1.15 Give the seventh roots of unity in exponential form! �





2. Linear algebra

2.1 Vectors, Vector spaces

Mathematics is frequently used in other sciences (like physics, engineering and so on) to model
natural events. In this events quantities are specified not only by numerical values and unit of
measurement but also by their direction. There are several examples for that such as a movement of
a car, direction of any kind of force, direction of the wind, and so on.

In applied sciences, like physics and engineering, the quantities which must be specified by
magnitude and direction are called vector quantities or more simply vectors.

Let us consider a shift from P1 to P2, where P1 and P2 are points in the plane. Then the
magnitude (numerical value) is the length of the section joining P1 with P2 and the arrow shows
the direction of the shift. See the figure below. In the following two vectors are considered to be
equal if they have the same magnitude (length) and direction. As a consequence, it can be assumed
without losses that the starting point is the origin.

2.1.1 Operation with vectors
The space R2

If we fix a point on the plane, which is called the origin, then we can characterize the position of all
the points on the plane by two numbers. More precisely, we can characterize the position of an
arbitrary point x on the plane by an ordered pair (x1,x2) or (x,y), where the numbers denotes the
coordinates of x. The vector with the starting point (0,0) (origin) and with the endpoint x is called
the position vector of x.

Definition 2.1.1 The collection of all ordered pairs of real numbers is denoted by R2. These
ordered pairs are also called real two-tuple vectors or two dimensional real vectors.

The first and the second numbers of a two dimensional vector x ∈ R2 said to be the first
and the second coordinates of x respectively.

We use the following notation:

R2 = R×R= { x | x = (x1,x2), x1,x2 ∈ R }.
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Addition of vectors in R2

If we have two two- dimensional vectors x and y, their sum geometrically is given by the di-
rected diagonal of the parallelogram with sides x and y. Algebraically this means coordinatewise
addition.

Definition 2.1.2 Let x,y ∈R2 be arbitrarily given with coordinates x = (x1,x2), and y = (y1,y2).
Then their sum is defined by the formula

x+ y = (x1 + y1,x2 + y2).

Problem 2.1 Find the sum x+ y where

x = (−10,1), and y = (1,1),a) x = (−2,−3.8), and y = (−2.1,1),b)

x=(−1001,1001), and y=(1001,−1001),c) x = (1,2.342), and y = (−11.2134,12.3).d)

Solutions:
•

x+ y = (−10,1)+(1,1) = (−10+1,1+1) = (−9,2)

•

x+ y = (−2,−3.8)+(−2.1,1) = (−4.1,−2.8)

•

x+ y = (−1001,1001)+(1001,−1001) = (0,0)
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Addition of vectors in R2

•

x+ y = (1,2.342)+(−11.2134,12.3) = (−10.2134,14.642)

Because the addition happens coordinatewise, all its properties are inherited from addition of real
numbers.

Proposition 2.1.1 — Properties of addition in R2. The set R2 with the addition of its elements
constitutes an abelian group1, that is to say
• addition is a binary operation in R2 (the sum of two two-dimensional vector is a two

dimensional vector),
• addition is associative,

(x+ y)+ z = x+(y+ z), x,y,z ∈ R2,

• there is an additive unit2,

x+0 = 0+ x = x, x ∈ R2, and 0 = (0,0),

• there exists an additive inverse of all elements of R2, that is, for all x ∈ R2 there is a vector
denoted by −x ∈ R2 such that

x+(−x) = (−x)+ x = 0,

• addition is commutative

x+ y = y+ x, x,y ∈ R2.
1This is the same as in the case of the set of real numbers or the set of complex numbers with their addition.
2If there is no ambiguity, we denote by 0 the zero number and the zero vector too.
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Multiplication by a scalar in R2

Multiplication by a scalar also runs coordinatewise. Geometrically the result will be on the same
line determined by the original vector, its length depends on the factor, and its direction depends on
the sign of the factor.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x

2x

-2x

Multiplication of vectors by scalars in R2

Definition 2.1.3 Let x = (x1,x2) be a vector in R2 and α ∈ R be a scalar, then

αx = (αx1,αx2).

Problem 2.2 Find λx where

α =−2, and x = (1,3),a) α = 2.3, and x = (−1,0.2),b)

α = π , and x = (π, 1
2),c) α = 20, and x = (0,0.01).d)

Solutions:
•

αx =−2(1,3) = (−2,−6)

•

αx = 2.3(−1,0.2) = (−2.3,0.46)

•

αx = π(π, 1
2) = (π2, π

2 )
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•

αx = 20(0,0.01) = (0,0.2)

Proposition 2.1.2 — Properties of multiplication by a scalar in R2. Let x,y ∈ R2 be vectors
and α,β ∈ R be scalars, then
• 0 · x = 0, and 1 · x = x,
• α(βx) = (αβ )x,
• (α +β )x = αx+βx, and α(x+ y) = αx+αy.

Proof. All the properties are inherited again from the properties of operations with real numbers.
For example,

(α +β )x = (α +β )(x1,x2) = ((α +β )x1,(α +β )x2) = (αx1 +βx1,αx2 +βx2) =

= (αx1,αx2)+(βx1,βx2) = α(x1,x2)+β (x1,x2) = αx+βx.

�

The space Rn

In a pretty similar way, like in the case of R2, one can define an ordered n-tuple like a two-tuple.

(2,3,−1),︸ ︷︷ ︸
Example for a three-tuple.

(−1,1,3,4,5,6)︸ ︷︷ ︸
Example for a six-tuple.

� Example 2.1 Let us collect the weight of a person on the first days of every months in the
previous year in kg.

w = (w1,w2, . . . ,w12) = (78,77.4,81,82.3,80.1,79.3,79,80,80,80.3,77.9,78.9).

The result will be a 12-tuple, and the ith member of this vector denotes the weight of the person on
the first day of the ith month. For example w11 = 77.9, this means that the weight of the person
was 77.9kg on the first day of November last year. �

Definition 2.1.4 Let n ∈ N be an arbitrary natural number, then x = (x1,x2, . . . ,xn) is called
a real n-tuple or an n dimensional real vector, where xi ∈ R, i = 1, . . . ,n denotes the ith
coordinate of x.

The set of all real n dimensional vectors is denoted by Rn,

Rn = R×R×·· ·×R︸ ︷︷ ︸
n-times

= { x | x = (x1,x2, . . . ,xn), xi ∈ R, i = 1, . . . ,n }.

One can construct a structure on the set Rn like in the case of R2. Definition of addition of n dimen-
sional real vectors or multiplication by a real scalar can be defined componentwise.

Definition 2.1.5 Let x,y ∈ Rn be arbitrarily given with coordinates x = (x1,x2, . . . ,xn), y =
(y1,y2, . . . ,yn), and λ ∈ R be a scalar. Then

x+ y = (x1 + y1,x2 + y2, . . . ,xn + yn), and λx = (λx1,λx2, . . .λxn).

� Example 2.2 Let us assume that a two bakeries produce a certain amount of bread in kg, which
are presented by the following 7 dimensional vectors.

x = (120,124,200,150,250,500,0), y = (100,90,130,100,200,390,0),
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where x represents the produced amount of the first bakery and y represents the produced amount of
the second bakery. The ith coordinates correspond to the ith day. For example the first bakery bakes
200kgs bread on Wednesday. What is the daily sum of the produced bread of the two bakeries?
This is given by the sum of the production vectors.

x+ y = (120,124,200,150,250,500,0)+(100,90,130,100,200,390,0) =

= (220,214,330,250,450,890,0).

Assume that the owner of a new bakery has the same parameters as the bakery with product vector
x. What will be the total daily outputs of a week?

2x+ y = 2(120,124,200,150,250,500,0)+(100,90,130,100,200,390,0) =

= (240,248,400,300,500,1000,0)+(100,90,130,100,200,390,0) =

= (340,338,530,400,700,1390,0)

�

Important remark: It is easy to verify the same properties of vector operations in Rn as in R2.

2.1.2 Vector spaces, subspaces
The properties of addition and multiplication by a scalar in R2 or in Rn come from the properties of
addition and multiplication of real numbers. These properties can also be considered as axioms.3

This way of thinking leads us to the concept of vector space.

Definition 2.1.6 — Vector space. Let V be a non-empty set. The elements of V are called
vectors. Assume that a binary map, denoted by + addition of vectors, is given on V with the
following properties:
• the sum of two elements of V is in V

v+w ∈V, v,w ∈V,

that is, + : V ×V →V is a binary operation on V ;
• addition is commutative,

v+w = w+ v, v,w ∈V ;

• addition is associative,

(u+ v)+w = u+(v+w), u,v,w ∈V ;

• there exists in V a unique vector 0 (called the zero vector or the additive unit) such that

v+0 = v, v ∈V ;

• to every vector v ∈V there corresponds a unique vector −v (called the additive inverse
of v) such that

v+(−v) = 0.

Moreover, assume that there is a binary map, denoted by ·multiplication by a scalar, is given
such that either · : R×V →V (multiplication by a real scalar) or · : C×V →V (multiplication
by a complex scalar)a with the following properties:

3Collections of assumptions or statements that are taken to be true.
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• multiplication by a scalar is associative, that is

(αβ )v = α(βv), α,β ∈ R or C, v ∈V ;

• for all v ∈V

1v = v;

• multiplication by scalars is distributive with respect to vector addition,

α(v+w) = αv+αw, α ∈ R or C, v,w ∈V ;

• multiplication by vectors is distributive with respect to scalar addition,

(α +β )v = αv+βv, α,β ∈ R or C, v ∈V.

If V fulfils the above assumptions, then it is called a vector space over R or C depending on
the scalar set.

aIn practice, these are the most frequent cases, but there are other possibilities too, e.g. multiplication by rational
numbers, and so on.

Examples for vector spaces
The spaces R2 and R3, the real plane and the real three dimensional space, are the best-known
examples for vector spaces. These are especially important in applications in physics and in
engineering. However, there are other well-known examples, which also have a great importance in
practice.

We have dealt with the space Rn. In a quite similar way one can define the space of complex
n-tuples Cn. Here the coordinates of the vectors are complex numbers, and the scalar set is usually
the set of complex numbers, but it can also be the set of real numbers. In notation

Cn = { v | v = (v1, . . . ,vn), vi ∈ C }.

� Example 2.3 Let v,w∈C3 v = (1+ i,1−2i,−1), w = (−10+3i,8+ i, i), and α ∈C, α = 3+ i,
then

v+w = (1+ i,1−2i,−1)+(−10+3i,8+ i, i) = (−9+4i,9− i,−1+ i),

and

αv=(3+i)(1+i,1−2i,−1)= ((3+i)(1+i),(3+i)(1−2i),(3+i)(−1))= (2+4i,5−5i,−3−i).

�

Besides the previously mentioned "scalar type" vector spaces, there are "function type" vector
spaces which also have a great use in applications. The most important vector spaces constituted by
functions contain certain polynomials.

Definition 2.1.7 — Real polynomials. Let n ∈ N, the function p : R→ R is called a polyno-
mial of degree n if it can be written in the form

p(x) = anxn +an−1xn−1 + · · ·+a1x+a0,

where an, . . . ,a1,a0 ∈ R are called the coefficients of p. The degree of p is denoted by deg p.
Let n ∈ N be given. The set of polynomials with degree at most n is denoted by Pn, that is

Pn = {p is a polynomial | deg p≤ n}.
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The space of all real polynomials is denoted by P, that is

P =
⋃

n∈N
Pn.

In Pn and in P the vectors are polynomials. The usual vector space operations happen pointwise,
that is to say, let p,q ∈Pn and α ∈ R, then

(p+q)(x) = p(x)+q(x), (α p)(x) = α p(x).

It is easy to check that with these operations both Pn and P are real vector spaces.
It is worthy to note that Pn ⊂P and that they are vector spaces with respect to the same

operations. This trail of thoughts naturally leads us to the concept of subspaces.

Definition 2.1.8 — Subspace. Assume that V is a vector space over the real numbers or over
the complex numbers, and let S⊂V . If S is a vector space with respect to the same operations
over the same scalar set, then it is called a subspace of V .

It is relatively easy to check whether a subset of a vector space is really a subspace. According to
the following proposition it is not necessary to check all the axioms. This ensures a comfortable
and practical method to detect a subspace in a vector space.

Theorem 2.1.3 — Subspace criteria. Let V be a vector space and S ⊂ V be a non-empty
subset of V . Then S is a subspace if and only if for all v,w ∈ S and for all α scalar we have

v−w ∈ S, and αv ∈ S.

Because of its special importance we prove this theorem.

Proof. Because of the assumption S is closed with respect to addition and multiplication by a scalar.
S is non-empty, so there is v ∈ S. With 0 = v−v ∈ S we have that the additive unit (zero vector)

is in S. Using this we get −v = 0− v ∈ S, so the inverse of v −v is also in S. The properties of the
addition are inherited from V . These entails that S is an abelian group with the same addition as V .

The properties of multiplication by a scalar in S are also inherited from the multiplication by a
scalar in V .

The reverse statement is trivial. �

Examples for subspaces

As it has been mentioned Pn is a subspace of P.
In general, if V is and arbitrary vector space, then V is a subspace of itself, and the set, which

contains only the additive unit {0} constitutes also a subspace of V . These two are said to be the
trivial subspaces of V .

In R2 if we put aside the trivial subspaces, (geometrically) the typical subspaces of R2 are lines
through the origin. In other words, these can be expressed as all the scalar multiplies of a fixed,
non-zero vector of R2.

� Example 2.4 The sets

S1 = { x∈R2 | x = (x1,x2) and x2 = 0 }

a)

S2 = { x∈R2 | x = (x1,x2) and x1 = 0 }

b)
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S3 = { x∈R2 | x= (x1,x2) and x1 = 2x2 }

c)

S4 = { x∈R2 | x=(x1,x2) and 2x1 =−x2 }

d)

are subspaces of R2, and geometrically they represent the x-axis, the y-axis,the line through the
origin with slope 2, and the line through the origin with slope −1

2 respectively.
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Examples for subspaces in R2

�

Let n ∈N be given, then Rn can be embedded into Rn+1 as a subspace of Rn+1 in the following
way:

S = { x ∈ Rn+1 | x = (x1, . . . ,xn,xn+1), and xn+1 = 0 },

then S can be identified with Rn.

Further examples for vector spaces and for subspaces

One can define the space of complex polynomials like real polynomials. The set of complex
polynomials with degree at most n is a subspace of the vector space of all complex polynomials.

Let us fix an interval [a,b], where a < b. The set of all real valued functions defined on [a,b]
constitutes a vector space over the real numbers with the pointwise operations. Important subspaces
are the space of continuous functions on [a,b], and the space of k-times continuously differentiable
functions on [a,b], where k is a given natural number.
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2.1.3 Linear combination of vectors

As we have seen, the non-trivial subspaces of R2 can be written as a scalar multiply of a non-zero
vector. If we think about this situation a little bit we perceive that this is a tremendous reduction in
the following sense. A line in R2 contains infinitely many vectors, but all of these vectors can be
written as αx, where α ∈ R and x is an arbitrarily fixed non-zero vector of the line in question. In
other words, all the lines of R2 trough the origin can be generated by a single vector.

In Rn, if n > 2, one can choose two non-zero vectors, x and y, such that there is no α with
the property αx = y. It is possible to talk about now the expression αx+βy, where α,β ∈ R. An
expression like this is called a linear combination of the vectors x and y. Collecting all such vectors
in a set we get a copy of R2 in Rn, geometrically this is a plane in Rn generated by the vectors x
and y.

It is reasonable to define a linear combination of finitely many vectors in a general vector space
V .

Definition 2.1.9 — Linear combination. Let V be a (real or complex) vector space, and
v1, . . . ,vm ∈ V be given vectors and α1, . . . ,αm be given (real or complex) scalars, then the
expression

α1v1 + · · ·αmvm

is called a linear combination of the vectors v1, . . . ,vm ∈V with coefficients α1, . . . ,αm.
The result of a linear combination like this will be a vector of V - because of the axioms of

vector spaces- so we also say that v can be combined linearly from the vectors v1, . . . ,vm ∈V
if there are scalars α1, . . . ,αm such that

v = α1v1 + · · ·αmvm.

� Example 2.5 Let us consider Pn, the space of real polynomials with degree at most n. Then
all vectors of Pn can be written as a linear combination of the vectors 1,x,x2, . . . ,xn, because if
p ∈Pn, then there are constants a0,a1, . . . ,an such that

p(x) = anxn + · · ·+a1x+a0 ·1 = anxn + · · ·+a1x+a0.

So Pn is the collection of all the linear combinations of the vectors 1,x,x2, . . . ,xn. We say that the
linear hull of the vectors 1,x,x2, . . . ,xn equals to Pn. �

Definition 2.1.10 — Linear hull. Let V be a (real or complex) vector space, and v1, . . . ,vm ∈V
be given vectors. Then the set

span{v1, . . . ,vm}= { v ∈V | v = α1v1 + · · ·αmvm }

is said to be the linear hull of the vectors v1, . . . ,vm or the linear span of the vectors v1, . . . ,vm.
If S⊂V , then the linear hull of S contains all the finite linear combinations of vectors from

S. That is

spanS = { v ∈V | v = α1v1 + · · ·αmvm, and vi ∈ S, i = 1, . . . ,m }.

An arbitrary set of vectors not necessarily has a structure. However, their linear hull always has a
structure.

Proposition 2.1.4 The linear span of an arbitrary subset of a vector space is a subspace.

Proof. Hint: Immediately follows from the subspace criteria. �
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Problem 2.3 Find the linear hull (the generated subspace) of the following vectors in the corre-
sponding vector space V .
• (0,1) ∈ R2

• (0,0,1),(0,1,0) ∈ R3

• (1,1) ∈ R2

• 1+ t, t,1+ t + t2 ∈P

Solutions:
•

span{(0,1)}= { x ∈ R2 | α(0,1) = (0,α), α ∈ R }.

Geometrically this is the y-axis on the plane.
•

span{(0,0,1),(0,1,0)}= { x ∈ R3 | α(0,0,1)+β (0,1,0) = (0,β ,α), α,β ∈ R }.

Geometrically this is the y− z-plane in the three dimensional space.
•

span{(1,1)}= { x ∈ R2 | α(1,1) = (α,α), α ∈ R }.

Geometrically this is the line on the two dimensional plane with the equation y = x.
•

span{1+ t, t,1+ t + t2}=

= { p∈P | p(t) = α(1+ t)+β t+γ(1+ t+ t2) = α +(α +β +γ)t+γt2, α,β ,γ ∈R }.
This is the space of polynomials with degree at most two P2.

2.1.4 Linear dependence, linear independence, basis, dimension
As we saw, the span of finitely many vectors can be very big. For example the space of real
polynomials with degree at most n equals to the linear span of finitely many vectors. This is a huge
reduction since Pn contains infinitely many elements.

An important question is, whether it is possible to get such a big reduction in all vector spaces
or not. If so, are there finite sets of vectors which have minimal number of elements in the sense
that if we cancel one element the resulted span will be contained strictly by the span of the original
set? Is there any kind of characterization of sets like these?

These questions lead us to the sequence of closely correlated concepts designated in the title of
this subsection.

At first, we define the linear dependence and independence of vectors. If a vector space is
spanned by a finite system of vectors, then there are minimal systems. If we omit one vector from a
minimal system, then the span of the remaining system will be smaller than the original one. These
systems are constituted of linearly independent vectors and they are called bases. These sets are the
"skeletons" of the vector space. If we know one "skeleton" we know the whole space.

These finite, minimal systems contain the same number of vectors, and this number will be the
dimension of the space.4

Let us assume that we have a system of vectors. If we can pick up one which can be written as
a linear combination of finitely many vectors from the remaining part of the system, then we can
cancel this vector from the system without the change of the span of the system. So, this vector is
superfluous from the point of view of the span of the system.

Another approach for the previously discussed situation is, that the zero vector can be combined
linearly from the system in a non-trivial way (not only with zero coefficients).

4There are infinite dimensional spaces too, when there is no finite system which spans the whole space. An example
for infinite dimensional spaces is the space of all real polynomials P.
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Definition 2.1.11 — Linear dependence, linear independence. Let V be a vector space,
v1, . . . ,vm ∈V be an arbitrary finite system of vectors. If there are α1, . . . ,αm scalars, at least
one is different from zero such that

α1v1 + · · ·+αmvm = 0,

then the vectors v1, . . . ,vm are said to be linearly dependent.
The vectors v1, . . . ,vm are said to be linearly independent if they are not linearly dependent.

� Example 2.6 If a finite system of vectors contains the zero vector, then the system is linearly
dependent. Indeed, choose any non-zero coefficient for the zero vector, and zero coefficient for the
other vectors. This construction results a non-trivial linear combination of the zero vector. �

� Example 2.7 Let x,y ∈ R2 be non-zero vectors. Geometrically their linear dependence means
that they are on the same lines. In this case there is a constant α 6= 0 such that x = αy. Otherwise
they are linearly independent. �

Problem 2.4 Find the linearly dependent and independent pairs x,y where

x = (1,1), y = (−1,−1), x,y ∈ R2,a) x = (1,1), y = (−1,1), x,y ∈ R2,b)

p1(t) = t, p2(t) = 2t, p1, p2 ∈P,c) p1(t) = 1+ t, p2(t) = 1− t, p1, p2 ∈P.d)

Solutions:
•

α(1,1)+β (−1,−1) = (0,0)⇐⇒ (α−β ,α−β ) = (0,0)⇐⇒ α = β , α,β ∈ R.

For example, let α = β = 2, then

2(1,1)+2(−1,−1) = (0,0).

That is, the zero vector can be combined linearly in a non-trivial way. So, the system
(1,1), (−1,−1) is linearly dependent.
•

α(1,1)+β (−1,1) = (0,0)⇐⇒ (α−β ,α +β ) = (0,0)⇐⇒ α−β = 0, and α +β = 0.

This is a simple system of linear equations. Its solution is α = β = 0. That is, the zero vector
can be combined linearly only in the trivial way. So, the system (1,1), (−1,1) is linearly
independent.
•

α p1(t)+β p2(t) = 0⇐⇒ αt +β2t = (α +2β )t = 0⇐⇒ α +2β = 0.

For example with the choice α = 2 and β =−1 we have

2t +(−1)2t = 0.

That is, the zero polynomial can be combined linearly in a non-trivial way. So, the system
p1(t) = t, p2(t) = 2t is linearly dependent.

•

α p1(t)+β p2(t) = 0⇐⇒ α(1+ t)+β (1− t) = α +β +(α−β )t = 0.

That is

α +β = 0, and α−β = 0.

This linear system has only the trivial solution α = β = 0, that is, the system p1(t) = 1+ t,
p2(t) = 1− t is linearly independent.
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A linear combination α1v1 + · · ·+αmvm, where not all the coefficients are zero is called a
non-trivial linear combination. Otherwise it is called a trivial linear combination. This opens
the door to give an alternative definition of linear dependence and independence.

Proposition 2.1.5 Let V be a vector space. The finite system of vectors v1, . . . ,vm ∈V is linearly
dependent if and only if the zero vector can be written as a non-trivial linear combination of
v1, . . . ,vm.5

The finite system of vectors v1, . . . ,vm ∈V is linearly independent if and only if the zero vector
can be written only as the trivial linear combination of v1, . . . ,vm.

We can go forward not towards the very important concept of basis.

Definition 2.1.12 — Basis. A vector space V is called finitely generated if there are vectors
v1, . . . ,vm ∈V such that

span{v1, . . . ,vm}=V.

In this case v1, . . . ,vm is said to be a generating system of V .
A linearly independent generating system v1, . . . ,vm ∈V of a vector space V is called a basis

of V .

Immediately follows from the definition, that all vectors of V can be written as linear combinations
of the basis vectors. The advantage of a basis over a generating system is that all the vectors of V
can be written only one way using the vectors of a basis.

Theorem 2.1.6 Every vector of a finitely generated vector space can be written as a unique
linear combination of a basis.

Theorem 2.1.7 Every basis of a finitely generated vector space contains the same number of
elements. This number is called the dimension of the vector space.

2.2 Matrices
Matrices are important objects both in theoretical and applied mathematics. Actually the vectors of
Rn and Cn can also be considered as matrices.

Let x ∈ Rn be a vector x = (x1, . . . ,xn), then the same date can also be written as a column
instead of the previous row. This is called the transposition of x, and we use the notation xT , where

xT =

x1
...

xn

 .
The vector x is a 1 by n matrix type matrix (it has 1 row and n columns), and xT is an n by 1 matrix
(it has n rows and 1 column). The vector xT is called the transpose of x.

A slight extension of this method results a new kind of object, matrices.

Definition 2.2.1 — Matrix. Let m,n ∈ N. An array of numbers

A =

a11 · · · a1,m
...

...
an1 · · · anm

= (ai j)
j=1,...,m
i=1,...,n ,

5Observe that the trivial linear combination is always possible in the case of an arbitrary system.
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is called an n×m real or complex matrix, where ai j ∈ R or ai j ∈ C, i = 1, . . . ,n, j = 1, . . . ,m.
The set of n×m real matrices is denoted by Mnm(R), and similarly, the set of n×m complex
matrices is denoted by Mnm(C).

The number ai j is the i jth entry of the matrix.
The ith row of A is denoted by Ai and the jth column is denoted by A j.

� Example 2.8 Consider the following table of numbers which contains the number of marks of
first year students in some subjects.

Subjects | Marks 5 4 3 2 1
Mathematics for Engineers 3 10 15 4 2

Logic 2 9 19 2 2
Calculus 3 7 20 1 3
Physics 5 5 18 5 1

The data is more transparent given in this way. If there are same data sets from different
universities it is easy to compare the results, and it is much easier if we skip the headlines and keep
only the numbers.

A =


3 10 15 4 2
2 9 19 2 2
3 7 20 1 3
5 5 18 5 1


This is actually a 4 by 5 matrix because it has four rows and five columns.

For example, its third column is the following 4 by 1 column vector

A3 =


15
19
20
18

 ,
and its second row is the following 1 by 5 row vector

A2 =
[
2 9 19 2 2

]
�

Special matrices
An n by n matrix is called a square matrix. For example3 2 −1

0 −1 9
0 2 8


is a 3×3 square matrix.

The entries aii of a square matrix are called the diagonal entries of the matrix. For example
the diagonal entries of the previous matrix are 3,−1,8.

If a square matrix has non-zero elements only in the diagonal, then it is called a diagonal
matrix. For example1 0 0

0 −1 0
0 0 4


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is a 3×3 diagonal matrix.
If a square matrix contains zero elements under(over) the diagonal, then it is said to be

upper(lower) triangular. For example2 3 6
0 −3 −10
0 0 2


is a 3×3 upper triangular matrix, and5 0 0

2 −4 0
4 5 1


is a 3 by 3 lower triangular matrix.

If all the entries of an n×m matrix are zero, then it is said to be the n×m zero matrix. For
example

0 0 0
0 0 0
0 0 0
0 0 0


is the 4×3 zero matrix. The conventional notation for the n×m zero matrix is 0n×m. However, if
there is no ambiguity, we skip the subscript, and use simply 0 denoting all full zero matrices.

2.2.1 Basic operations with matrices
Addition of matrices
If A = (ai j)

j=1,...,m
i=1,...,n and B = (bi j)

j=1,...,m
i=1,...,n are of the same type matrices, then their sum is defined in

the following waya11 · · · a1m
...

...
an1 · · · anm

+
b11 · · · b1m

...
...

bn1 · · · bnm

=

a11 +b11 · · · a1,m +b1m
...

...
an1 +bn1 · · · anm +bnm

 .
� Example 2.9 �

Theorem 2.2.1 — Properties of addition of matrices. Let A,B,C ∈Mn×m
abe arbitrary matri-

ces of the same type. Then
• Matrix addition is a binary operation on the set of matrices, in other words, the sum of

two n×m real/complex matrices will be an n×m real/complex matrix.
• Matrix addition is associative:

(A+B)+C = A+(B+C).

• There exists an additive unit: the full zero n×n matrix denoted by 0, with the property:

A+0 = 0+A = A.

• There exists a unique additive inverse of A denoted by −A such that

A+(−A) = (−A)+A = 0.
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• Matrix addition is a commutative operation, that is

A+B = A+B.

For short, (Mn×m,+) is an abelian group.
aIf the scalar set is not specified, then it is always understood in a way that it equals either to R or to C, but it is

the same for both matrices.

Proof. Hint: All the statements follow from the properties of the addition of (real or complex)
numbers, because the addition runs componentwise. �

� Example 2.10 Let

A =

[
0 −1.02 11
−π 2.3 −7

]
, B =

[√
3 2 −8

0 −1.3 5

]
then

A+B =

[
0 −1.02 11
−π 2.3 −7

]
+

[√
3 2 −8

0 −1.3 5

]
=

[√
3 0.98 3
−π 1 −2

]
�

Multiplication by a scalar
Definition 2.2.2 Let α be a scalar and A be a matrix, then their product is defined in the
following way:

αA = λ

a11 · · · a1m
...

...
an1 · · · anm

=

αa11 · · · αa1m
...

...
αan1 · · · αanm

 .
� Example 2.11

3
[

1 2 −1
−2 4 4

]
=

[
3 6 −3
−6 12 12

]
.

�

Theorem 2.2.2 — Properties of multiplication by a scalar. Let A and B be arbitrary matrices
of the same type α,β be arbitrary scalars, then
•

0 ·A = 0 and 1 ·A = A,

•
(αβ )A = α(βA),

• Distributivity:

(α +β )A = αA+βA and1 α(A+B) = αA+αB.

Proof. Hint: All the statements follows from the properties of multiplication of (complex or real)
scalars, because the operation runs componentwise. �
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Corollary 2.2.3 The set of n×m real(complex) matrices constitute an n×m real(complex)
vector space with respect to the introduced addition and multiplication by a scalar.

Transposition of matrices
Transposition is a unary operation. It assigns an m×n matrix to an n×m matrix.

Definition 2.2.3 — Transposition. Let

A =

a11 · · · a1,m
...

...
an1 · · · anm

= (ai j)
j=1,...,m
i=1,...,n ,

be an n×m matrix, then the m×n matrix

AT =

a11 · · · a1,n
...

...
am1 · · · amn

= (ai j)
i=1,...,n
j=1,...,m

is called the transpose of A.

� Example 2.12 Let

A =


1 2
−10 4
−1 3
10 20

 , B =

1 2 3
4 5 6
7 8 9

 , C =
[
−1 3 8 −2 1.3 −π 95

]

be matrices, then their transposes are

AT =

[
1 −10 −1 10
2 4 3 20

]
, BT =

1 4 7
2 5 8
3 6 9

 , CT =



−1
3
8
−2
1.3
−π

95


�

Theorem 2.2.4 — Properties of transposition. Let A and B be arbitrarily given matrices of the
same type, and α be a scalar, then
• (

AT )T
= A,

that is, transposition is an idempotent operation,
•

(A+B)T = AT +BT ,
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•

(αA)T = αAT .

Proof. Immediate consequence of the definition. �

2.2.2 Multiplication of matrices
Multiplication of matrices is a little bit more subtle than addition of matrices or multiplication by a
scalar.

Let us consider two matrices. Assume that the first one has the same number of columns as
the number of rows of the second, that is to say A ∈Mn×m and B ∈Mm×k. In this situation we can
define their product C = AB, where C ∈Mn×k and the jth element of the ith row of C is resulted by
the ith row of A and the jth column of B in the following way

ci j =
m

∑
t=1

aitbt j.

� Example 2.13 Let

A =

[
1 0 −1 2
3 3 4 5

]
, and B =


1
1
1
1

 ,
Then A is a 2×4 matrix and B is a 4×1 matrix, so their product will be a 2 by 1 matrix, that is to
say, a 2 dimensional column vector.

AB =

[
1 0 −1 2
3 3 4 5

]
1
1
1
1

=
[
1 ·1+0 ·1+(−1) ·1+2 ·1 3 ·1+3 ·1+4 ·1+5 ·1

]
=

=
[
1+0−1+2 3+3+4+5

]
=
[
2 15

]
�

Theorem 2.2.5 — Properties of matrix multiplication. • Matrix multiplication is not com-
mutative.
• Matrix multiplication is associative.
• Transpose of a product is equal to the product of the transposes in the reverse order, that

is(AB)T = BT AT .
• Distributivity: (A+B)C = AC+BC and A(B+C) = AB+AC.

� Example 2.14 Let

A =
[
−1 2

]
, and B =

[
3
4

]
,

then AB will be a 1 by 1 matrix, that is to say, a number. However, BA will be a 2 by 2 matrix.

AB = (−1) ·2+3 ·4 = 5, and BA =

[
−3 6
−4 8

]
.

�
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� Example 2.15 Let

A =

[
−1 2
3 −4

]
, and B =

[
0 −1
1 0

]
,

then

AB =

[
2 1
4 −3

]
, and BA =

[
−3 −4
−1 2

]
.

�

The previous examples verify the non-commutativity of matrix multiplication even in the case of
square matrices.

Definition 2.2.4 — Multiplicative inverse of matrices. The n×n matrix

En =


1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1


is said to be the n dimensional unit matrix. If there is no ambiguity, we write E instead of En.
Let A∈Mn×n. We call A invertible, if there is such a matrix B∈Mn×n for which AB = BA = E.

The calculation of the inverse practically means the solution of systems of linear equations, which
is an independent topic inside linear algebra. So, we come back to numerical calculation of the
inverse in that section.

2.3 System of linear equations
Linear systems (system of linear equations) and their solution are the most important parts of linear
algebra because lots of problems in mathematics- in particular applied mathematics, and in applied
sciences too- lead to a solution of a linear system of equations or frequently to a solution of linear
systems.

Let us start, as a warming up, with an example from high school, namely with a solution of a
two variables linear system. Its general form is

ax+by = c

dx+ ey = f ,

where a,b,c,d,e, f are given constants, and x,y are the unknowns.
A solution of a system like this geometrically means to find the coordinates of the intersection

of the lines represented by the equations in the system on the plane. For example, if our system has
the form

x+ y = 1

−x+ y = 0,

then the solution is represented on Figure 2.1. For the coordinates of the solution we should execute
the following steps:
• Add the equations. The result is a single equation with one variable y.
• Solve this equation for y.
• Substitute back the value of y into the first equation. The result is an equation with one

variable x.
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Figure 2.1: Solution of the system is (x0,y0) = (1
2 ,

1
2)

• Solve this equation for x.

x+ y = 1 x+ y = 1 x+
1
2
= 1→ x =

1
2

−x+ y = 0 2y = 1 y =
1
2

It seems to be evidently advantageous to get rid of the variables and equality signs because in the
calculations only the numbers are used. For this we can write the system, and the previous solution
process in matrix form separating the right hand side of the system by a vertical line.[

1 1 1
−1 1 0

]
∼
[

1 1 1
0 2 1

]
⇒ 2y = 1⇒ y =

1
2
⇒ x+

1
2
= 1⇒ x =

1
2
.

So, the solution isx

y

=

1
2

1
2

 .
Let us see an another example with a little bit more "complicated" coefficients.

2x−3y = 11

3x+ y = 3.
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Using the previous method we have the following, where the first step −3
2 times the first row is

added to the second row.[
2 −3 11
3 1 3

]
∼
[

2 −3 11
0 11

2 −27
2

]
⇒ 11

2
y=−27

2
⇒ y=−27

11
⇒ 2x+

81
11

=
121
11
⇒ x =

20
11

.

So, the solution isx

y

=

 20
11

−27
11

 .
One can recognize that the goal of the first step is the reduction of the number of the variables. This
strategy is the technique of Gaussian elimination. The method is discussed in detail in the next
section.

2.3.1 Classification of linear systems
An arbitrary linear system has the form

Ax = b,

where A ∈Mn×m(R) or Mn×m(C) is a given matrix b ∈ Rn or Cn is a given vector and x ∈ Rm or
Cm is unknown.

Definition 2.3.1 If the vector b is zero, then the system of linear equations is said to be
homogeneous otherwise it is called inhomogeneous.

If the system is inhomogeneous the matrix

[A|b]

is said to be the augmented matrix of the system.

According to the definition, a homogeneous system has the form

Ax = 0.

In this case the augmentation with b does not make sense, so A is simply called the matrix of the
homogeneous system.

The solution set of a homogeneous system has a nice structure.

Theorem 2.3.1 The solution set of a homogeneous system of linear equations is a subspace.

Proof. Let α be a scalar and x,y are solutions of the homogeneous linear system. Then

A(αx) = αAx = α ·0 = 0,

so αx is also a solution. Moreover

A(x− y) = Ax−Ay = 0−0 = 0,

so x− y is also a solution. Using the subspace criteria (Theorem 2.1.3) we get the statement. �

This subspace can be the trivial one, say {0}, which contains only the additive unit, the zero vector
only. This means that an arbitrary homogeneous system always have at least one solution, the zero
vector. The important consequence of the previous theorem is the following.
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Corollary 2.3.2 The solution set of an arbitrary homogeneous linear system contains either
exactly one element (the zero vector) or it contains infinitely many elements (a non-trivial
subspace).

These statements imply that a solution of a homogeneous system is practically to find a basis in its
solution subspace.

� Example 2.16 Let us consider the following homogeneous linear system.

x1 + x2 + x3 = 0

x1 +2x2− x3 = 0,

then we can perform the following calculation[
1 1 1
1 2 −1

]
∼
[

1 1 1
0 1 −2

]
In the last row there are two unknowns with non-zero coefficients x2 and x3. So, we have to choose
one as a parameter, and express the variables with the aid of this parameter.

x3 = p, then x2−2p = 0⇒ x2 = 2p⇒ x1 + x2 + x3 = x1 +2p+ p = 0⇒ x1 =−3p

This entails the solution of the linear system:

x = p

−3
2
1

 , p ∈ R or x ∈ span


−3

2
1


Here the solution of the homogeneous linear system is a one-dimensional subspace of R3, and−3

2
1

 is a base of the solution subspace. �

In the next example the solution subspace will be a two-dimensional one.

� Example 2.17 Let us find the solution of the following homogeneous system of linear equations.

2x1−2x2 +4x3 +5x4 = 0

x1 +2x2− x3−2x4 = 0

then we have[
2 −2 4 5
1 2 −1 −2

]
∼
[

2 −2 4 5
0 3 −3 −9

2

]
there are three unknowns with non-zero coefficients in the last row, so we have to choose two
parameters.

x4 = p1, x3 = p2⇒ 3x2−3p2− 9
2 p1 = 0⇒ x2 = p2 +

3
2 p1⇒

2x1−2(p2 +
3
2 p1)+4p2 +5p1 = 0⇒ x1 =−p1− p2.

So, the solution subspace has the form

x = p1


−1

3
2
0
1

+ p2


−1
1
1
0

 , p1, p2 ∈ R, or x ∈ span



−1

3
2
0
1

 ,

−1
1
1
0


 .
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This is a two-dimensional subspace of R4, where

−1

3
2
0
1

 ,

−1
1
1
0




is a base. �

The solution set of an inhomogeneous system cannot be a subspace, because the zero vector
cannot be a solution if b is different from the zero vector.

A0 = 0 6= b.

However, the solution set of the inhomogeneous system also has a nice structure, which depends
on the solution subspace of the corresponding homogeneous system Ax = 0. Namely, the solution
set of the inhomogeneous system is a translation of the solution subspace of the homogeneous
system.

Definition 2.3.2 — Affine subspace. Let V be a vector space, S be a subspace of V and v ∈V
be an arbitrary vector. The set

v+S = {x ∈ S | x = v+ s, where s ∈ S }

is said to be and affine subspace of V .

If v ∈ S, then v+S = S, so subspaces are also affine subspaces as well.

Theorem 2.3.3 The solution set of an inhomogeneous system of linear equations is an affine
subspace, where the translation vector is an arbitrary solution of the system (particular solution)
and the subspace is the solution set of the corresponding homogeneous system.

Proof. Let us consider the inhomogeneous system

Ax = b.

Let S be the solution subspace of the corresponding inhomogeneous system Ax = 0, and v be a
particular solution of the inhomogeneous system, that is to say Av = b, then for all s ∈ S we have

A(v+ s) = Av+As = b+0 = b,

so all the vectors, which have the form v+ s are solutions of the inhomogeneous system.
For the opposite direction, assume that x is an arbitrary solution of the system. Then

A(x− v) = Ax−Av = b−b = 0,

so x− v is a solution of the corresponding homogeneous system, that is to say, x− v ∈ S which
implies x ∈ v+S, which gives the end of the proof. �

� Example 2.18 Let us determine the solution of the following inhomogeneous linear system.

x1 + x2 + x3 = 1

x1 +2x2− x3 = 2,

then we get[
1 1 1 1
1 2 −1 2

]
∼
[

1 1 1 1
0 1 −2 1

]
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Similarly to the homogeneous case we have

x3 = p, then x2−2p = 1⇒ x2 = 1+2p⇒ x1 +x2 +x3 = x1 +1+2p+ p = 1⇒ x1 =−3p

This entails the solution of the linear system:

x =

 −3p
1+2p

p

=

0
1
0

+ p

−3
2
1

 , p ∈ R or x ∈

0
1
0

+ span


−3

2
1

 .

�

2.3.2 Gaussian elimination, solution of linear systems
Let us start with an example again. Consider the following linear system.

x+2y−5z = 1

2x+2y+ z = −6

4x+2y−2z = 0

Its matrix form is1 2 −5 1
2 2 1 −6
4 2 −2 0


In the first step we would like to reduce the number of variables from three to two in the second
and in the third row using the first row. To get the desired effect subtract two times the first row
from the second row, and four times the first row from the third row. As a result we can omit x in
the second and in the third rows.1 2 −5 1

2 2 1 −6
4 2 −2 0

∼
1 2 −5 1

0 −2 11 −8
0 −6 18 −4


Now, we subtract three times the second row from the third row omitting y from the third row.1 2 −5 1

0 −2 11 −8
0 −6 18 −4

∼
1 2 −5 1

0 −2 11 −8
0 0 −15 20


At last, we determine the coordinates of the solution vector in reverse order. We derive at first the
value of z using the last row of the last matrix.1 2 −5 1

0 −2 11 −8
0 0 −15 20

 ⇒ z =−20
15

=−4
3
.

Substituting back into the second row we get y.1 2 −5 1
0 −2 11 −8
0 0 −15 20

 ⇒−2y+11
(
−4

3

)
=−8 ⇒−2y =

44
3
− 24

3
=

20
3
⇒ y =−10

3
.

The value of x comes from the first row substituting back the values of y and z.1 2 −5 1
0 −2 11 −8
0 0 −15 20

 ⇒ x+2
(
−10

3

)
−5
(
−4

3

)
= 1 ⇒ x− 20

3
+

20
3

= 1 ⇒ x = 1.

During the Gaussian elimination, our strategy is to transform the matrix into echelon form using
some simple row operations.
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Definition 2.3.3 — Elementary row operations. Let us consider a matrix. The following
operations with the rows of the matrix are said to be elementary row operations.
• Interchanging two rows of the matrix.
• Multiplying a row of the matrix by a non-zero scalar.
• Adding two rows of the matrix.

Definition 2.3.4 — Echelon matrix. A matrix is said to be (row) echelon matrix or it has
echelon form if the column index (second index) of the first non-zero element in the ith row is
less than the column index of the first non-zero element in the i+1th row for all i = 1, · · · ,n−1,
and if a row does not contain any non-zero element (full zero row), then it is at the bottom of the
matrix.

Practically this means that in an echelon matrix if we consider an arbitrary row, then in the rows
below zeros are only on the left hand side from the position of the first non-zero element of the row
in question. In other words, the first non-zero number in an arbitrary row is strictly to the right of
the first non-zero number of the row above it.

� Example 2.19 The matrix

1 2 3 4 2 91 −1 2 1
0 3 11 6 0 9 0 2 1
0 0 13 41 −2 0 −1 −2 21
0 0 0 5 6 91 1 −2 0
0 0 0 0 0 2 −2 22 33
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0


has echelon form and the matrix

1 2 3 4 2 91 −1 2 1
0 3 11 6 0 9 0 2 1
0 1 13 41 −2 0 −1 −2 21
0 0 0 5 6 91 1 −2 0
0 0 0 0 0 2 −2 22 33
0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0


has not, because the column index of the first non-zero element in the second and also in the third
row is two, but according to the definition in the third row this index should be strictly greater than
two. �

Gaussian elimination: This algorithm is a sequence of elementary row operations performed
on and arbitrary matrix, which results a (row) echelon matrix. Usually, it is for solving systems of
linear equations, however, with some restrictions, it is applicable in other numerical calculations of
linear algebra such as determinants, rank of matrices and so on.

� Example 2.20 Find the solution of the following homogeneous system of linear equations!

x1−2x2−4x3 + x4−3x5 = 0

−x1 + x2−2x3−2x4−2x5 = 0

2x1−5x2−14x3 + x4−11x5 = 0

Let us write it into matrix form and apply Gaussian elimination. 1 −2 −4 1 −3
−1 1 −2 −2 −2
2 −5 −14 1 −11

∼
1 −2 −4 1 −3

0 −1 −6 −1 −5
0 −1 −6 −1 −5

∼
1 −2 −4 1 −3

0 −1 −6 −1 −5
0 0 0 0 0


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We have four unknowns with non-zero coefficients in the last row. So, we have to introduce three
parameters: x5 = p1, x4 = p2, x3 = p3. Substituting these back into the equations, we have

−x2−6p3− p2−5p1 = 0⇒ x2 =−5p1− p2−6p3.

From the first equation we get

x1−2(−5p1− p2−6p3)−4p3 + p2−3p1 = 0⇒ x1 =−7p1−3p2−8p3.

So, the solution set is a three dimensional subspace of R5, and

x =


−7p1−3p2−8p3
−5p1− p2−6p3

p3
p2
p1

= p1


−7
−5
0
0
1

+ p2


−3
−1
0
1
0

+ p3


−8
−6
1
0
0

 , p1, p2, p3 ∈ R,

or

x ∈ span




−7
−5
0
0
1

 ,

−3
−1
0
1
0

 ,

−8
−6
1
0
0


 .

�

� Example 2.21 Find the solution of the following inhomogeneous linear system!

−x1 + x2 +2x3 +10x4 + x5 =−1

2x1 +4x2 +8x3 +9x4− x5 = 2

x1 + x2 +2x3 +2x4 +4x5 = 1

Execute Gaussian elimination on the augmented matrix of the system!−1 1 2 10 1 −1
2 4 8 9 −1 2
1 1 2 2 4 1

∼
−1 1 2 10 1 −1

0 6 12 29 1 0
0 2 4 12 5 0

∼
−1 1 2 10 1 −1

0 6 12 29 1 0
0 0 0 7

3
14
3 0


In the last row we have two unknowns with non-zero coefficients. We have to introduce one
parameter x5 = p1. From this we get

7
3

x4 +
14
3

p1 = 0⇒ x4 =−p1.

In the second row we have two new unknowns with non-zero coefficients x2 and x3. So, we have to
introduce a new parameter x3 = p2. Using these we have

6x2+12p2 +29(−2p1)+ p1 = 0⇒ x2 =
57
6

p1−2p2.

Substituting everything back into the first equation we can determine x1.

−x1 +
57
6

p1−2p2 +2p2 +10(−2p1)+ p1 =−1⇒ x1 = 1− 29
3

p1.
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So, the solution set is the following affine subspace of R5.

x =


1− 29

3 p1
57
6 p1−2p2

p2
−2p1

p1

=


1
0
0
0
0

+ p1


−29

3
57
6
0
−2
1

+ p2


0
−2
1
0
0

 , p1, p2 ∈ R,

or

x ∈


1
0
0
0
0

+ span




−29

3
57
6
0
−2
1

 ,


0
−2
1
0
0


 .

�

2.3.3 Calculation of the inverse matrix
As it has been mentioned before, the calculation of the inverse matrix practically means the solution
of n inhomogeneous systems of linear equations if the matrix is an n by n one.

However, simple Gaussian elimination is not enough here, we need one of its modifications,
namely, the Gauss-Jordan elimination. The only difference here is that the goal of the method is not
only the echelon form of the matrix, but the transformation of it into the n by n unit matrix. During
this process we write the unit matrix at the beginning beside the original matrix, and at the end we
get the inverse of the matrix.

In other words, we combine the elements of the natural base of Rn from the columns of the
matrix linearly.

� Example 2.22 Let us calculate the inverse of the following matrix!

A =

2 −1 4
1 0 −1
4 −1 4

 .
During the process (Gauss-Jordan elimination), in a nutshell, we execute the following transforma-
tion:

[A E3] ∼ ·· · ∼ [E3 A]

Let us see the method in practice. At first we divide the first row by 2 to get 1 in the first position of
the first row. Subtract now the new first row from the old second row, and subtract four times the
new first row form the old third row.2 −1 4 1 0 0

1 0 −1 0 1 0
4 −1 4 0 0 1

 ∼
1 −1

2 2 1
2 0 0

0 1
2 −3 −1

2 1 0
0 1 −4 −2 0 1


Multiply by 2 the second row to get 1 in the second position of the second row. Add the 1

2 multiply
of the second new row to the first old row, and subtract the new row from the third old row.1 −1

2 2 1
2 0 0

0 1
2 −3 −1

2 1 0
0 1 −4 −2 0 1

 ∼
1 0 −1 0 1 0

0 1 −6 −1 2 0
0 0 2 −1 −2 1


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Divide the third row by 2 to get 1 in the third position of the third row. Add six times this new third
row to the old second row, and once to the old first row.1 0 −1 0 1 0

0 1 −6 −1 2 0
0 0 2 −1 −2 1

 ∼
1 0 0 −1

2 0 1
2

0 1 0 −4 −4 3
0 0 1 −1

2 −1 1
2


So, the inverse of A is

A−1 =

−1
2 0 1

2
−4 −4 3
−1

2 −1 1
2

 .
�

2.4 Determinants
The determinant is a map, which assigns a number to a square matrix. Geometrically this number
is the signed volume of the parallelotope with sides determined by the rows of the matrix. In the
case of a two by two matrix this is the signed area of a parallelogram and in the case of a three by
three matrix this is the signed volume of a parallelepiped.

At first, we define the determinant of a two by two and a three by three matrix. After some
examples, we define the determinant of an arbitrary square matrix in a recursive way using Laplace’s
expansion theorem.

Definition 2.4.1 — Determinant of a two by two matrix. Let’s consider the matrix A =[
a11 a12
a21 a22

]
. We assign a number to A in the following manner:

detA = a11a22−a12a21.

This number is called the determinant of A.

Because its small size, calculation with the determinant of two by two matrices is reasonably
transparent. Using this transparency, we verify some useful properties of determinants which will
remain also true in the general case.

Proposition 2.4.1 — Properties of the determinant (2× 2 case). Let A and B be two 2× 2
matrices and α be a scalar, then
• if two rows or columns of A are equal, then the determinant of A is zero;
• if A contains a full zero row, then its determinant is zero;
• if we multiply the elements of a row or a column of A by α , then the determinant will be

α detA;
• if we add a scalar multiply of a row/column to an another row/column A, then the value of

the determinant does not change;
• the determinant of the unit matrix is one;
• the determinant of A is equal to the determinant of its transpose;
• if we interchange two rows or columns of A, the determinant changes its sign;
• the determinant of a product of two square matrices is equal to the product of their determi-

nants;
• the determinant of an invertible matrix is equal to the reciprocal of the determinant of the

inverse matrix;
• the determinant of an upper triangular matrix is equal to the product of the diagonal entries

of the matrix.
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Proof. Let

A =

[
a11 a12
a21 a22

]
, and B =

[
b11 b12
b21 b22

]
.

We prove statements concerning rows and columns only for rows. The corresponding statements
concerning columns run in a pretty similar way.
• Assume that the rows of A are equal, then a11 = a21 and a12 = a22, and

detA = a11a22−a12a21 = a11a12−a12a11 = 0.

• Let us assume that the second row of A is a full zero row, then

detA = a110−a120 = 0.

• Let us multiply the first row by α , then

det
[

αa11 αa12
a21 a22

]
= αa11a22−αa12a21 = α(a11a22−a12a21) = α detA.

• Let us add the first row to the second row, then we get

det
[

a11 a12
a21 +a11 a22 +a12

]
= a11(a22+a12)−a12(a21+a11) = a11a22−a12a21 = detA.

•

det
[

1 0
0 1

]
= 1 ·1−0 ·0 = 1.

•

detA = a11a22−a12a21 = a11a22−a21a12 = detAT .

• Let us interchange the rows of A.[
a21 a22
a11 a12

]
= a21a12−a22a11 =−(a11a22−a12a21) =−detA.

The remaining part can be proved in a very similar way like the previous statements, however, the
corresponding calculations are a little bit lengthier. �

� Example 2.23 Let us calculate the determinants of the following matrices!
•

det
[

0 1
1 0

]
= 0 ·0−1 ·1 =−1.

We can have the same result if we use the properties of the determinant. Namely, the
determinant of the unit matrix is one, and this matrix can be derived from the unit matrix
interchanging their rows, which results the minus sign.
•

det
[

1 0
0 i

]
= 1 · i−0 ·0 = i.
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•

det
[

1 2
3 4

]
= 4−6 =−2

•

det
[

3 4
1 2

]
= 6−4 = 2.

•

det
[

1+ i i
−i 2

]
= 2(1+ i)− i(−i) = 2+2i+ i2 = 2+2i−1 = 1+2i.

•

det
[

2+ i 3i
−i 2i

]
= 2i(2+ i)−3i(−i) = 4i+2i2 +3i2 =−5+4i.

•

det
[

1 1
1 1

]
= 0

because their rows are the same.
�

Definition 2.4.2 — Determinant of a three by three matrix. Let us consider the matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

. We assign a number to A in the following way:

detA = a11a22a33 +a12a23a31 +a13a21a32−a13a22a31−a12a21a33−a11a23a32.

This number is said to be the determinant of A.

� Example 2.24 Let

A =

1 2 3
4 5 6
7 8 9

 ,
then

detA = 1 ·5 ·9+2 ·6 ·7+3 ·4 ·8−3 ·5 ·7−2 ·4 ·9−1 ·6 ·8 = 45+84+96−105−72−48 = 0.

�

2.4.1 Laplace expansion theorem, determinant of n by n matrices
Definition 2.4.3 Let A be an n× n matrix. The i j minor of A is denoted by Ai j , is the
determinant of the (n−1)× (n−1) matrix that results from A by deleting the ith row and the
jth column.
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Theorem 2.4.2 — Laplace expansion theorem. If A is an n×n matrix, then its determinant
can be calculated using the expansion below:

detA =
n

∑
t=1

(−1)i+tait detAit , (expansion with respect to the ith row)

or

detA =
n

∑
t=1

(−1)t+ jat j detAt j, (expansion with respect to the jth column).

The advantage of this theorem is that the determinant of an n× n matrix can be written as a
signed sum of (n−1)× (n−1) matrices. We can continue this process recursively with expressing
the (n− 1)× (n− 1) determinants as signed sums of (n− 2)× (n− 2) determinants till 2× 2
determinants.

In practice we combine the power of Laplace’s theorem with restricted Gaussian elimination.
Namely, we can add a scalar multiply of a row/column to an another row/column but the value of
the determinant does not change (see Proposition 2.4.1).

Our strategy is to produce lots of zeros in a row or in a column and applying the theorem to this
row or column. This way we can decrease the number of terms of the sum in the expansion. As a
result of the repeated application of this strategy we can reduce the calculation of the determinant
of an arbitrary matrix into the calculation of the determinant of a two by two matrix.

� Example 2.25 Let us expand the following determinant with respect to its second column!

det


1 0 2 −3
1 0 1 5
2 0 4 6
0 2 12 −9

= (−1)1+2 ·0 ·det

1 1 5
2 4 6
0 12 −9

+(−1)2+2 ·0 ·det

1 2 −3
2 4 6
0 12 −9

+

(−1)3+2 ·0 ·det

1 2 −3
1 1 5
0 12 −9

+(−1)4+2 ·2 ·det

1 2 −3
1 1 5
2 4 6

=

2 ·det

1 2 −3
1 1 5
2 4 6

= 2(6+20−12+6−12−20) =−24

�

2.4.2 Calculation of determinants using Gaussian elimination
The simplest way to calculate big determinants is to transform them into upper triangular form,
using restricted Gaussian elimination (those elementary row operations which do not change the
value of the determinant).

� Example 2.26

det


1 −1 2 −3
11 −9 24 −30
2 2 4 6
−9 8 −13 30

= det


1 −1 2 −3
0 2 2 3
0 4 0 12
0 −1 5 3

= det


1 −1 2 −3
0 2 2 3
0 0 −4 6
0 0 6 9

2

=

det


1 −1 2 −3
0 2 2 3
0 0 −4 6
0 0 0 27

2

= 1 ·2 · (−4) · 27
2

=−108.
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�

2.5 Euclidean spaces
In the previous part, we saw how a structure can be constructed on a set of vectors (addition and
multiplication by a scalar). This is a quite simple configuration with simple calculation rules
(properties of the operations), which are very similar to the calculation rules of real or complex
numbers.

In applications we need more. In engineering or in physics it is accustomed to measure the
length and angel of quantities (e.g. magnitude and direction of forces). Orthogonality also has a
special importance in several applications.

Best models, which have all the required additional properties, are Euclidean spaces. The new
key concept is the concept of the inner product. All the other additional features of the structure
can be derived from the inner product.

There are some differences between real and complex Euclidean spaces. At first we deal with
the real case, and the last subsection is devoted to the complex case.

2.5.1 Inner product and length of vectors
The operation in Euclidean spaces6 is the dot product or inner product. There are several approaches
to define it. Here we choose the most elegant and easily memorizable algebraic way, which uses
matrix multiplication.

Important remark: Unless stated otherwise, all vectors are assumed to be column vec-
tors!

Definition 2.5.1 — Inner product. Let x,y ∈ Rn be given vectors, then the real number

xT y = x1y1 + · · ·+ xnyn

is said to be the inner product of x and y.a

aThe expression dot product of x and y is also common in the literature. Here we use the matrix multiplication x
transpose times y notation, however the notations x · y, and 〈x,y〉 are also frequently used. The latter one is especially
important when the members of the space in question are not vectors.

� Example 2.27 Let x,y ∈ R5 be given in the following way:

x =


3
10
−0.2
−1.34

1

 , y =


−2
0.2
3
1
−5

 ,
then their inner product is

xT y= 3 ·(−2)+10 ·0.2+(−0.2) ·3+(−1.34) ·1+1 ·(−5) =−6+2−0.6−1.34−5=−10.94

�

Theorem 2.5.1 — Properties of the inner product in Rn. Let x,y,z∈Rn be vectors, and α ∈R
be a scalar, then

6Here we deal with finite dimensional, real Euclidean spaces, which can always be identified as Rn for some n. There
are important infinite dimensional Euclidean spaces too.
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• the (real) inner product is symmetric, that is,

xT y = yT x.

• the (real) inner product is additive in its both variables, that is,

(x+ y)T z = xT z+ yT z, and xT (y+ z) = xT y+ xT z.

• the (real) inner product is homogeneous in its both variables, that is,

(αx)T y = α(xT y), and xT (αy) = α(xT y).

• the (real) inner product is positive definite, that is,

xT x≥ 0, and it is zero if and only if x = 0.

The proof immediately follows from the definition of the inner product in Rn.
We can also formulate the statements of the previous theorem that the inner product in Rn is a

symmetric, bilinear, positive definite map. Actually, like in the case of the definition of vector
spaces, we can say that a vector space V over R is a real Euclidean space if there is a two variables
function 〈·, ·〉 : V ×V → R, which is a symmetric, bilinear, positive definite map. In detail, for all
u,v,w ∈V and for all α ∈ R we have
• symmetry:

〈u,v〉= 〈v,u〉.

• bilinearity:

〈u+ v,w〉= 〈u,w〉+ 〈v,w〉, and 〈u,v+w〉= 〈u,v〉+ 〈u,w〉.

• homogeneity:

〈αu,v〉= α〈u,v〉, and 〈u,αv〉= α〈u,v〉.

• positive definitness:

〈u,u〉 ≥ 0, and it is zero if and only if u = 0.

� Example 2.28 Let us consider the continuous, real valued functions on the interval [0,1]. This
set is a real vector space with respect to the pointwise addition, and scalar multiplication. Then the
two variables function

( f ,g) 7→ 〈 f ,g〉=
1∫

0

f (t)g(t)dt

is a symmetric, bilinear, positive definite map. So, this vector space is also a Euclidean space. �

Definition 2.5.2 — Length or norm of vectors in Rn. Let x ∈ Rn be a vector, then the real
number

‖x‖=
√

xT x =
√

x2
1 + · · ·+ x2

n

is said to be the norm of x or the length of x.
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� Example 2.29 Let

x =


−1
1
−1
1
−1

 , and y =


2
−1
7
1

 ,
then their norms are

‖x‖=
√

(−1)2 +12 +(−1)2 +12 +(−1)2 =
√

1+1+1+1+1 =
√

5≈ 2.2361,

and

‖y‖=
√

22 +(−1)2 +72 +12 =
√

4+1+49+1 =
√

55≈ 7.4162.

�

Theorem 2.5.2 — Cauchy-Schwarz inequality in Rn. Let x,y ∈ Rn, then

|xT y| ≤ ‖x‖ · ‖y‖.

Proof. Let α be an arbitrary scalar and x,y∈Rn be arbitrary vectors, then by the positive definitness
of the inner product we have

0≤ (y+αx)T (y+αx) = yT y+yT (αx)+(αx)T y+(αx)T (αx) = ‖y‖2 +2α(xT y)+α
2‖x‖2.

Here we used the properties of the inner product. The quadratic expression for α is greater than
zero if and only if its discriminant is non-positive, that is to say

(2xT y)2−4‖x‖2‖y‖2 ≤ 0,

which is equivalent to our statement. �

Definition 2.5.3 — Orthogonality. Let x,y ∈Rn be given vectors. They are called orthogonal
or perpendicular if their inner product is zero, that is

xT y = 0.

� Example 2.30 It is clear from the definition that the zero vector is perpendicular to an arbitrary
vector.

Let x =
[

x1
x2

]
∈ R2 be given, then y =

[
−x2
x1

]
∈ R2 is always orthogonal to x, because

xT y =
[
x1 x2

][−x2
x1

]
= x1(−x2)+ x2x1 =−x1x2 + x1x2 = 0.

�

Reminder from hight school: Pythagoras theorem states that the square of the side opposite the
right angle is equal to the sum of the squares of the other two sides of an arbitrary right triangle.

This theorem is also true in Rn.
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Theorem 2.5.3 — Pythagoras theorem in Rn. Let x,y ∈ Rn be perpendicular vectors, that is
to say, xT y = 0, then

‖x+ y‖2 = ‖x‖2 +‖y‖2.

Proof. Using the properties of the inner product we have

‖x+ y‖2 = (x+ y)T (x+ y) = xT x+2xT y+ yT y = ‖x‖2 +‖y‖2.

�

Theorem 2.5.4 — Properties of the norm in Rn. Let x,y ∈ Rn and α ∈ R, then
• ‖x‖ ≥ 0 and it is zero if and only if x = 0, that is, the norm is non-negative,
• ‖αx‖= |α · ‖x‖, that is, the norm is absolute homogeneous,
• ‖x+ y‖ ≤ ‖x‖+‖y‖, that is, the norm fulfils the triangle inequality.a

aThe triangle inequality is also called Minkowski inequality.

Proof. Let xT =
[
x1 . . . xn

]
, yT =

[
y1 . . . yn

]
∈ Rn be arbitrary vectors, and α ∈ R be an

arbitrary scalar, then

‖x‖=
√

x2
1 + · · ·+ x2

n,

which is a square root of a sum of squares, that is a sum of non-negative numbers, so the result
must be non-negative too. This sum can be zero if and only if all of its members are zero, so all the
xis are equal to zero, which verifies the first part of the statement.

For the second part let us consider the norm

‖αx‖=
√

α2x2
1 + · · ·+α2x2

n =
√

α2(x2
1 + · · ·+ x2

n) = |α| ·
√

x2
1 + · · ·+ x2

n = |α| · ‖x‖,

which results absolute homogeneity of the norm.
For the last part let us calculate the square of the left hand side of the inequality.

‖x+y‖2 = (x+y)T (x+y) = ‖x‖2 +2xT y+‖y‖2 ≤ ‖x‖2 +2‖x‖ ·‖y‖+‖y‖2 = (‖x‖+‖y‖)2,

which gives the triangle inequality. Here we used the Cauchy-Schwarz inequality. �

2.5.2 Gram-Schmidt orthogonalization
Definition 2.5.4 — Orthogonal and orthonormal systems. Let V be a vector space. A
system of vectors {b1, . . . ,bk} is called orthogonal if bi perpendicular to b j if i 6= j, that is to
say

bT
i b j = 0, if i 6= j.

An orthogonal system is said to be orthonormal if ‖bi‖= 1 for every i = 1, . . . ,k.

Orthonormal bases are especially important in applications because it is easy to calculate the
coefficients of an arbitrary vector with respect to an orthonormal base.
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� Example 2.31 The base E1, . . . ,En ∈ Rn

E1 =



1
0
0
...
0
0
0


, . . . , Ei =



0
...
0
1
0
...
0


← the ith coordinate, . . . En =



0
0
0
...
0
0
1


is said to be the natural basis of Rn, which is an orthonormal basis of Rn as well. �

� Example 2.32 The system

a1 =

[
1
1

]
, a2 =

[
−1
1

]
is an orthogonal basis of R2. This system is not orthonormal, because the length of both vectors are√

2. However the system

1√
2

a1 =
1√
2

[
1
1

]
=

[
1√
2

1√
2

]
1√
2

a2 =
1√
2

[
−1
1

]
=

[
− 1√

2
1√
2

]

is an orthonormal basis of R2. �

If {b1, . . . ,bn} is an arbitrary base in a Euclidean space, one can construct an orthonormal base
{e1, . . . ,en} with the aid of {b1, . . . ,bn} such that

span{e1, . . . ,el}= span{b1, . . . ,bl}, for all l = 1, . . . ,n.

This is the Gram-Schmidt orthogonalization process:
Let {b1, . . . ,bn} be a base in the Euclidean space E.

1. step: Let

e1 =
b1

‖b1‖
:

2. step: For k = 2, . . . ,n

ẽk = bk− (bT
k e1)e1−·· ·− (bT

k ek−1)ek−1,

and

ek =
ẽk

‖ẽk‖
:

� Example 2.33 Let us apply the Gram-Schmidt process to the following system of vectors!

b1 =

1
2
1

 , b2 =

−1
2
0

 , b3 =

 2
−1
1

 .
The norm of b1 is ‖b1‖=

√
12 +22 +12 =

√
6, so

e1 =
b1

‖b1‖
=

1√
6

1
2
1

 .
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Using the formula for ẽ2 we have

ẽ2 = b2−(bT
2 e1)e1 =

−1
2
0

−
[−1 2 0

] 1√
6

1
2
1

 1√
6

1
2
1

=

−1
2
0

− 1
2

1
2
1

=
1
2

−3
2
−1

 .
The norm of ẽ2 is

‖ẽ2‖=
1
2

√
9+4+1 =

√
14
2

.

So,

e2 =
ẽ2

‖ẽ2‖
=

2√
14
· 1

2

−3
2
−1

=
1√
14

−3
2
−1

 .
The formula for ẽ3 is

ẽ3 = b3− (bT
3 e1)e1− (bT

3 e2)e2,

which gives

ẽ3 =

 2
−1
1

−
[2 −1 1

] 1√
6

1
2
1

 1√
6

1
2
1

−
[2 −1 1

] 1√
14

−3
2
−1

 1√
14

−3
2
−1

=

=

 2
−1
1

− 1
6

1
2
1

+ 9
14

−3
2
−1

=
1
21

−2
−1
4

 .
The norm of ẽ3 is

‖ẽ3‖=
1
21

√
4+1+16 =

√
21

21
=

1√
21

.

Which entails

e3 =
ẽ3

‖ẽ3‖
=
√

21
1
21

−2
−1
4

=
1√
21

−2
−1
4

 .
The required orthonormal system is

1√
6

1
2
1

 , 1√
14

−3
2
−1

 , 1√
21

−2
−1
4

 .
�

2.6 Eigenvalues, eigenspaces
Definition 2.6.1 — Eigenvalue, eigenvector. Let A be a square matrix. A scalar λ is called
an eigenvalue of A if there exists a non-zero vector v such that

Av = λv.

In this case v is said to be an eigenvector belonging to λ .
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In the definition, the assumption v 6= 0 is crucial, because the defining equation above is fulfilled
for an arbitrary scalar if v = 0.

� Example 2.34 Let us consider the two by two unit matrix

E2 =

[
1 0
0 1

]
,

then all the vectors of R2 are eigenvectors of λ = 1. Indeed, let x ∈ R2, then

E2x =
[

1 0
0 1

][
x1
x2

]
=

[
1 · x1 +0 · x2
0 · x1 +1 · x2

]
=

[
x1
x2

]
= 1 · x.

�

� Example 2.35 Let A be the following "rotation" matrix.

A =

[
1
2

√
3

2
−
√

3
2

1
2 .

]

Then we will see later, that it has no real eigenvalue at all. �

� Example 2.36 Let A be the matrix below.

A =

[
3 2
1 2

]
Then [

3 2
1 2

][
2
1

]
=

[
2 ·3+2 ·1
1 ·2+2 ·1

]
=

[
8

4 =

]
= 4

[
2
1

]
.

So, λ = 4 is an eigenvalue of A and v =
[

2
1

]
is eigenvector belonging to 4.

It is worthy to observe the fact that if p is an arbitrary real number then p ·v is also an eigenvector
of A belonging to 4. �

Theorem 2.6.1 Eigenvectors belonging to the same eigenvalue constitute a subspace.

Proof. Assume that λ is an eigenvalue of A, v,w are eigenvectors belonging to λ and α is an
arbitrary scalar.

Using the subspace criteria (Theorem 2.1.3), we have

A(v−w) = Av−Aw = λv−λw = λ (v−w),

which means that v−w is also an eigenvector of A belonging to λ . Moreover,

A(αv) = αAv = α(λv) = λ (αv)

which means that αv is also an eigenvector of A belonging to λ . These imply the statement. �

The defining equation of eigenvalues and eigenvectors is

Av = λv,
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which can be written in the form

(A−λE)v = 0

after some rearrangement. Here E denotes the corresponding unit matrix. This is a homogeneous
system of linear equations for the unknown vector v. The matrix of the equation is a quadratic one.
The zero vector is always a solution of a system like this. This is called the trivial solution of the
homogeneous system. A system like this has a non-trivial solution if and only if the determinant of
its matrix is zero, that is to say, if

det(A−λE) 6= 0.

Expanding this determinant, the result will be a polynomial of λ .

Definition 2.6.2 — Characteristic polynomial. The polynomial pA

pA(t) = det(A− tE)

is called the characteristic polynomial of A.

� Example 2.37 Let

A =

[
2 1
2 3

]
,

then its characteristic polynomial pA is

pA(λ ) = det
[

2−λ 1
2 3−λ

]
= (2−λ )(3−λ )−1 ·2 = λ

2−5λ +4.

�

Because of the definition of the characteristic polynomial we get the following statement.

Theorem 2.6.2 The roots of the characteristic polynomial of a square matrix A are the eigenval-
ues of A.

� Example 2.38 Let A be like in the previous example, then its characteristic polynomial is
pA(λ ) = λ 2−5λ +4. Its roots are

λ1,2 =
5±
√

25−16
2

=
5±3

2
⇒ λ1 = 4, λ2 = 1.

For the eigenspaces we have to solve the corresponding system of linear equations.

λ1 = 4 ⇒
[

2−λ1 1
2 3−λ1

]
=

[
2−4 1

2 3−4

]
=

[
−2 1
2 −1

]
∼
[
−2 1
0 0

]
Now, let x2 = p, then x1 =

1
2 p, so

x = p
[1

2
1

]
, p ∈ R

is the eigenspace corresponding to λ1 = 4. This is a one-dimensional subspace of R2, and
[1

2
1

]
constitutes a base in this subspace. A pretty similar calculation can be carried out for the other
eigenvalue.

λ2 = 1 ⇒
[

2−λ2 1
2 3−λ2

]
=

[
2−1 1

2 3−1

]
=

[
1 1
2 2

]
∼
[

1 1
0 0

]
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Now, let x2 = p, then x1 =−p, so

x = p
[
−1
1

]
, p ∈ R

is the eigenspace corresponding to λ2 = 1. This is a one-dimensional subspace of R2, and
[
−1
1

]
constitutes a base in this subspace. �
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2.7 Exercises
Exercise 2.1 Let

a =


1

1.23
−2.4
−8

 , b =


1
−2
7.01
3.03

 , u =
[
1− i 2+3i

]
, w =

[
i+3 2.1+0.1i

]
.

Find the value of the following expressions!

a+b,a) a−4b,b) 2a−3b,c)

u−w,d) u+5w,e) iu+(2− i)w.f)

�

Exercise 2.2 Which one is a subspace, which one is not? Apply the subspace criteria!

S =

{
x ∈ R2 x =

[
t
−t

]
, t ∈ R

}a)

S =

{
x ∈ R2 x =

[
t

t +1

]
, t ∈ R

}b)

S =

 x ∈ R3 x =

0
1
t

 , t ∈ R


c)

S =

 x ∈ R3 x =

 t
−t
s

 , t,s ∈ R


d)

S=
{

p ∈P p(t) = at2 +bt, a,b ∈ R
}e)

S=
{

p ∈Pp(t) = at2 +bt +1, a,b ∈ R
}f)

�

Exercise 2.3 Find the linearly dependent and independent pairs x,y where

x = (1,2), y = (−2,−4), x,y ∈ R2,a) x = (3,4), y = (4,3), x,y ∈ R2,b)

x = (1,1), y = (−2,−1), x,y ∈ R2,c) x = (1,1), y = (4,4), x,y ∈ R2.d)

�

Exercise 2.4 Find the linearly independent systems in R3!
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x=

1
1
1

 , y=

1
2
3

 , z=

−1
0
1

 .
a)

x=

−1
0
2

 , y=

1
0
2

 , z=

1
0
1

 .
b)

x=

 0
1

10

 , y=

10
1
0

 , z=

 0
10
1

 .
c)

x=

−1
2
2

 , y=

2
2
3

 , z=

3
3
3

 .
d)

�

Exercise 2.5 Find the linearly independent systems in P!

p1(t)= t+1, p2(t)= t2+1, p3(t)= 2,

a)

p1(t) = t +1, p2(t) = t

b)

p1(t)= 3t+1, p2(t)= t3+1, p3(t)= 2t,

c)

p1(t)= t+1, p2(t)= t−1, p3(t)= 1.

d)

�

Exercise 2.6 Let

A=

[
1 2 3 4
1 2 −1 −2

]
, B=

[
2 −3 0 1
0 1 0 −4

]
, C =

 0.1 2.3
−1.1 2.03
9.04 10.36

 , D=

2.22 1.1
0.01 0.2

1 3

 .
Find the values of the following expressions!

A+B,a) 3A−2B,b) AT −BT ,c)

10C+D,d) 100D,e) CT −10DT .f)

�
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Exercise 2.7 Calculate the products AT B, ABT , CD, CB, AT D, where

A =

1
2
3

 , B =

 −1
i

1−2i

 , C =

[
1 0 5
−1 i 2

]
, D =

4 −i
3 2
i i+2


�

Exercise 2.8 Solve the following systems of linear equations!

x1 + x2 + x3− x4 = 4

x1− x2 + x3 + x4 = 8

3x1 + x2 + x3− x4 = 16

a)

x1 +3x2 + x3− x4 = 7

2x1 +5x2− x3 +2x4 = 22

3x1 +8x2 + x3− x4 = 24

b)

x1−2x2 +3x3− x4 +2x5 = 2

3x1− x2 +5x3−3x4− x5 = 6

2x1 + x2 +2x3−2x4−3x5 = 8

c)

x1 + x2 + x3 + x4 = 1

2x1 +3x2 +3x3− x4 = 3

d)

x1 + x2− x3 = 2

e)

x1 + x2− x3 = 2

2x1 +2x2−2x3 = 3

f)

�

Exercise 2.9 Find the inverse of the following matrices!

[
1 −1
2 2

]a) [
1 i
2 i

]b) [
1 3
2 −2

]c) [
5 0
9 1

]d)
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 1 1 2
−1 2 0
1 2 3


a)  2 0 −2

−1 1 0
1 1 1


b)  6 0 3

−4 1 1
0 1 0


c)

�

Exercise 2.10 Find the determinant of the following matrices!

1 0 0
0 1 0
0 0 1


a) 1 0 0

0 0 1
0 1 0


b) 0 1 0

0 0 1
1 0 0


c)

1 1 2
2 −1 1
1 1 1


d) 1 0 0

0 1 0
0 0 1


e) 2 2 1

1 1 1
2

0 1 0


f)

 i 1 −i
2 4 1
3i −2i 1


g) 1− i 0 2

0 −1− i 3
π 0 1


h) 

1 2 3 4
−1 −1 0 2
4 2 0 −2
10 0 0 −3


i)

�

Exercise 2.11 Find the the norm of x and y, the inner product xT y if

x =


1
2
3
4

 , y=


−2
−1
0
3


a)

x=

1
1
1

 , y=

 10
−10
20


b)

x =

 8
8
−2

 , y=

0
0
2


c)

�
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Exercise 2.12 Apply the Gram-Schmidt orthogonalization technic to the following systems!

b1 =

[
1
1

]
, b2 =

[
1
2

]
.

a)

b1 =

[
−1
2

]
, b2 =

[
0
1

]
.

b)

b1 =

[
3
4

]
, b2 =

[
−1
0

]
.

c)

b1 =

1
2
1

 , b2 =

−1
2
0

 , b3 =

 2
−1
1

 .
a)

b1 =

1
1
1

 , b2 =

0
1
2

 , b3 =

2
3
1

 .
b)

�

Exercise 2.13 Find the eigenvalues and eigenspaces of the following matrices.

 0 1
−1
0


a) [

−2 3
−4 5

]b) [
−2 −3
1 1

]c) [
3 1
1 3

]d)

�





3. Basics of numerical mathematics

3.1 Machine representation of numbers
It is important to emphasise the following crucial fact: Not all real numbers are representable by
a computer, only a finite subset of the reals can be represented. This entails rounding errors of
numerical computations. Without care these can result in serious problems in real life.1

3.1.1 Normal form of numbers
A reminder from high school: Let us consider the following number 234.5189. This is the
decimal representation of this number. In detail

234.5189 = 2 ·102 +3 ·101 +4 ·100 +5 ·10−1 +1 ·10−2 +8 ·10−3 +9 ·10−4,

where the digits multiplied by the corresponding powers of the base of the numeral system 10, and
the place value of the digits depend on the exponent. If we push this number into the interval [0,1[,
the we get

234.5189 =+103

 2
10

+
3

102 +
4

103 +
5

104 +
1

105 +
8

106 +
9

107︸ ︷︷ ︸
mantissa

 .

If the base is fixed in advance, it is enough to keep the sign (+), the exponent (3) and the digits.

+ 3 2 3 4 5 1 8 9

All real numbers have a finite or an infinite decimal representation. However, one can choose
another base number, an arbitrary integer which is greater than 1. If the base is different from 10
one can give a similar representation in a pretty similar way like in the case of 10 using the powers
of the new base.

From numerical point of view, the most useful base numbers are 10 (decimal system), 2 (binary
system), and 16 (hexadecimal system).

1See for example the following webpage: http://www-users.math.umn.edu/ arnold//disasters/
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Definition 3.1.1 — Normal form of decimal numbers. Let x be a real number with finite
decimal representation, that is to say, there are dn,dn−1, . . . ,d1,d0,d−1, . . . ,d−l digits (numbers
from the set {0,1,2,3,4,5,6,7,8,9} such that dn and d−l are different from zero, and

x =±
n

∑
i=−l

di10i,

then the form

± n+1 dn . . . d−l =±10n+1
(

dn

10
+ · · · d−l

10n+l+1

)
is said to be the normal form of x. The number n+1 is called the characteristic of x, and the
sequence of the digits is called the mantissa of x.

In a computer, only finite number of digits can be representable. The length of the mantissa and
the possible range of the characteristic (upper and lower bond) depend on the computer capabilities,
but they are fixed. This entails that not all real numbers can be representable. A reasonable
requirement is the representation of a finite number (this can be quite big) of real numbers given in
a certain range. In other words, there is a number which is the biggest representable number, its
negative is the smallest representable number. Even between these two, not all the numbers are
representable.

If x is an arbitrary real number it is possible to give arbitrarily close to x a number which has a
finite decimal representation.

Proposition 3.1.1 Let x ∈ R, then for every ε > 0 there are digits dn, . . . ,d−l such that∣∣∣∣∣x− n

∑
i=−l

di10i

∣∣∣∣∣≤ ε.

This statement legitimates the (approximate) computer representation of numbers.

Representation in other number systems
It is possible to choose other base numbers for the representation. In numerics the most frequent
choices, besides the decimal representation, are the dyadic representation (base number is 2) and
hexadecimal representation (base number is 16). In the first case the only two digits (we have) are
0 and 1, in the latter case we have sixteen digits: 0,1, . . . ,9,A,B,C,D,E,F . However, all positive
integers greater than one are feasible as a base number, and number of digits as well.2

Definition 3.1.2 — Normal form of numbers. Let a be a positive integer greater than one, and
let x be a real number with finite adic representation, that is to say, there are

mn,mn−1, . . . ,m1,m0,m−1, . . . ,m−l

digits (numbers from the set {0,1, . . . ,a−1} such that mn and m−l are different from zero, and

x =±
n

∑
i=−l

miai,

2A good and well-known example for this phenomenon is the system based on 60. This numeral system is originated
with the ancient Sumerians, and it is still used for measuring time, angles, and geographic coordinates.
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then the form

± n+1 mn . . . m−l a
=±an+1

(mn

a
+ · · · m−l

an+l+1

)
is said to be the adic normal form of x. The number n+1 is called the characteristic of x, and
the sequence of the digits is called the mantissa of x.

� Example 3.1 Let us find the dyadic representation of 13.8125.

13 = 8+4+1 = 11012.

0.8125 =
1
2
+

1
4
+

1
16

.

So,

13.812510 = 1101.11012.

The normal forms in the decimal and in the dyadic systems are:

13.8125 = 102 ·0.138125, and 1101.1101 = 24 ·0.11011101.

�

3.1.2 Floating-point numbers
Assume that we have t positions to store a number. The first position is the representation of the
sign of the number, t− l−1 positions for the representation of digits from the left of the (decimal,
dyadical and so on) point and l positions for the representation of digits from the right of the
(decimal, dyadical and so on) point. This is called the fixed-point representation of numbers.

If we let the (decimal, dyadical and so on) point move we get the floating-point representation
of numbers. This is similar to the normal form, but here not all finitely representable numbers can
be stored, because the length of the mantissa is given (t).

Definition 3.1.3 — Floating-point numbers. Let t,a be positive integers a > 1, l and u be
integers (typically l < 0 <u). Then the numbers

± n m1 . . . mt a
=±an

(m1

a
+ · · ·+ mt

at

)
are called Floating-point numbers, where

0 < m1 ≤ a−1, 0≤ mi ≤ a−1, i = 2,3, . . . ,n, l ≤ n≤u.

The number a is the base of the representation, t is the length of the mantissa, l, and u are
the lower and upper bounds for the exponent n respectively.

If there is no ambiguity, we skip the subscript a.

� Example 3.2 Let a = 10, t = 4, l =−3, and u= 3. Give the floating-point representation of
10.32.

10.32 =+102
(

1
10

+
0

102 +
3

103 +
2

104

)
= + 2 1 0 3 2

10

�

� Example 3.3 Let a = 2, t = 4, l = −3, and u = 3. Give the floating-point representation of
3.25. We have only two digits: 0 and 1. At first we transform the number from the decimal system
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into the dyadic system, and the dot denotes the dyadic dot instead of the decimal dot. We do not
use a different notation for the adic dots in different number systems.

3.2510 = 11.012 =+22
(

1
2
+

1
22 +

0
23 +

1
24

)
= + 2 1 1 0 1

2

�

Distribution of Floating-point numbers
If a, t,l and u are given, then we can calculate the largest and the smallest positive representable
numbers. All positive representable numbers are within this range. Reflecting this set, with respect
to zero, we get the set of negative representable numbers. Because of this phenomenon, it is enough
to deal with positive representable numbers.

The smallest positive representable number is

r =+al
(

1
a
+

0
a2 + · · ·+

0
at

)
= al−1.

The largest representable number is

R=+au
(

a−1
a

+
a−1

a2 + · · ·+ a−1
at

)
= au(1−a−t).

All representable positive numbers are between these two numbers, but they are not equally spaced.

 underflow 

0

The ’hole’ around zero

They get dense close to r and their number is getting less and less as R is approaching.
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 positive representable numbers 

0

overflow 

The area of positive representable numbers

Strictly between−r and r the only representable number is zero, this "hole" can lead to serious
drawbacks during numerical calculations.

Let F denote the set of representable numbers. It is easy to check that for every x ∈ F

a−1
εM|x| ≤ |x− y| ≤ εM|x|,

where y ∈ F is the next nearest to y, and εM = a1−t is the machine epsilon. This latter one is the
distance between one and the next nearest floating-point number to one.

In every interval

[ak−1,ak[, k = l, . . .e(u, t), where the integer e(u, t) depends on u and t

there are equal number of representable floating-point numbers (a− 1)at−1. This causes the
inequable distribution (with bigger and bigger gaps) of representable numbers.

� Example 3.4 Let a= 2, t = 4, l=−4, and u= 3. Find the smallest and the largest representable
floating-point number. What is the value of the machine epsilon? How many positive numbers are
representable?

al−1 = 2−4−1 =
1
32

is the smallest representable positive floating-point number.

au(1−a−t)= 23(1−2−4)= 8
15
16

=
15
8

= 7.5 is the largest representable positive floating-point number.

εM = a1−t = 21−4 =
1
8
= 0.125 is the machine epsilon.
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We have eight different mantissas. The first digit is always one and we have two choices for the
remaining three respectively, which gives 23 possibilities.

The number of the exponents are u−l+ 1 = 3− (−4)+ 1 = 8, where +1 is for the zero
exponent.

All in all, we have 8 ·8 = 64 different representable, positive numbers. �

3.1.3 Rounding and truncation
The set F is always finite, however, even in the interval [r,R] there are infinitely many real
numbers. The representation on an arbitrary real number x in R \F is an important practical
problem . Furthermore, even if x,y ∈ F, their sum, product and so on, do not necessary belong to F.

Definition 3.1.4 Let r ≤ |x| ≤R be a real number. Then x̃ ∈ F is called the rounded floating-
point representation of x if x̃ is the closest floating-point number to x. x̃ ∈ F is called the
truncated floating-point representation of x if x̃ is the closest floating-point number to x,
which is less than x.

If |x| ≤ r (x is in the ’hole’ around zero), then x̃ is equal to zero, even if x is different from
zero. This phenomenon is said to be the underflow.

If |x|>R, then there is no floating point representation of x, this is called the overflow.

If x ∈ F then x̃ = x both with rounding and truncation.

� Example 3.5 Let a = 2, t = 4, l = −3, and u = 3. Find the floating point representation of
2.625 and 1

3 .

2.625 = 2+
1
2
+

1
8
= 22

(
1
2
+

0
22 +

1
23 +

0
24 +

1
25

)
.

The length of the mantissa is 4, so there is no room for all the digits. We have to choose an
approximate value.

With truncation we just omit the last digit, so we have

2.625≈ 22
(

1
2
+

0
22 +

1
23 +

0
24

)
= + 2 1 0 1 0 = 2.5.

The next representable number is 2.75, so 2.625 is exactly the same length both from 2.5 and 2.75.
So, both are as good as the rounded approximation for 2.625. �

During arithmetic operations with floating-point numbers, the resulted error (caused by rounding
or truncation) can be accumulated. This can imply serious mistakes at the end of the calculation.
Because of this, one has to design a numerical algorithm with a great care to avoid such failures.
For this reason, it is necessary to know more about the spreading of error or error analysis of
arithmetic operations. This is far beyond the scope of this work. The interested reader can find
detailed description of this in the literature (see e.g. the References at the end of this book).

3.2 Non-linear system of equations

The focus of this part is the following explicit equation

F(x) = 0, (3.1)

where F is a given real valued function and x is the unknown. If a variable is a solution of (3.1),
then we denote it by x̄.
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� Example 3.6 Find a real number x, which sine and square are the same, that is to say, solve the
following non-linear equation:

sinx = x2.

Let F : R→ R, F(x) = sinx− x2, then we have to solve the following problem

sinx− x2 = F(x) = 0. (3.2)

Here F is a one-variable function, and for the solution of the problem we should solve the non-linear
equation above.

This problem has a trivial solution x = 0, but it also has an other solution (see the figure below).
It is not possible to determine this second solution explicitly. However, numerical methods can be
used to find an approximation of it. �

-0.5 0.5 1 1.5

-3

-2

-1

1

2

3

 solution of F(x)=0

f(x)=x
2

g(x)=sin(x)

F(x)=g(x)-f(x)=sin(x)-x
2

Graphical solution of (3.2)

� Example 3.7 Find the solution of the following non-linear system!

x2
1 + x2

2 = 1

x3
1− x2 = 0

This is equivalent to (3.1), where

F : R2→ R2, F(x1,x2) = (x2
1 + x2

2−1,x3
1− x2).

�
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3.2.1 Main properties of numerical algorithms
Concerning numerical methods, there are some properties which classify their quality and their
level of performance. The most important features are:
• rate of convergence;
• local or global convergence;
• wideness of the class where the method is applicable.
The first property characterize the speed of the method.

Definition 3.2.1 — Rate of the convergence. Let {xn}n∈N be a real sequence, which con-
verges to x̄. If there exists a constant c ∈]0,1[ such that

lim
n→∞

|xn+1− x̄|
|xn− x̄|

= c,

then we say that xn tends to x̄ linearly.
If

lim
n→∞

|xn+1− x̄|
|xn− x̄|

= 1,

then we say that xn tends to x̄ sublinearly.
If

lim
n→∞

|xn+1− x̄|
|xn− x̄|

= 0,

then we say that xn tends to x̄ superinearly.
Moreover, if there is a number p > 1 such that

lim
n→∞

|xn+1− x̄|
|xn− x̄|p

< c,

then we say that the sequence converges with order p to x̄.
The case p = 2 is called quadratic convergence.

One can define the rate of convergence in higher dimension (in Rn) using the norm instead of
the absolute value. However, it is also enough to investigate the rate of the convergence of the
partial sequences, which is real. In this case, for example linear rate means linear rate of the partial
sequences (see the examples below).

It is clear that the worst rate (the slowest one) is sublinear convergence, the linear convergence
is better, and superlinear convergence is better than linear convergence. If p is increasing we get a
better and better rate. In practice quadratically convergent methods are good.

� Example 3.8 Let

xn =
1
n
, yn =

1
2n , zn =

1
n!
, vn =

1
33n ,

then all these sequences tend to zero. Because their elements are positive, we can omit the absolute
value. In point of fact, we have to investigate the following ratios:

xn+1

xn
=

n
n+1

→ 1,
yn+1

yn
=

2n

2n+1 =
1
2
,

zn+1

zn
=

n!
(n+1)!

→ 0,
vn+1

v2
n

=
1

33n → 0.

So, xn converges sublinearly, yn converges linearly, zn converges superlinearly, and vn converges
quadratically to zero. �
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Definition 3.2.2 An algorithm is called globally convergent if starting from any point of the
iteration the resulted sequence tends to a solution. Otherwise the method is said to be locally
convergent.

Local convergence means that the first point of the iteration should be close enough to a solution, if
not, it can happen that the method produces a divergent sequence.

The third property, how wide the class of problems is where the method works, cannot be
defined in an exact way. For example, some methods are applicable for continuous functions, others
can be applied only for differentiable functions and so on.

3.2.2 Non-linear equations
We start with the one-variable case, which is more transparent than the multi-variables case.
Therefore it will be easier to understand the main ideas and methods of this topic.

Bisection method
This method is suitable for solving only non-linear equations, there is no generalization for solving
multi-variables problems. The reason why we deal with this algorithm is its simplicity, easy
implementability, and global convergence.

Let F be a continuous function on a bounded interval [a,b] such that it changes its sign at the
end of the interval, that is to say

F(a)F(b)< 0⇔ either F(a)< 0 and F(b)> 0 or F(a)> 0 and F(b)< 0.

For example the function on the figure below fulfils the previously mentioned requirements on the
interval [0.5,2.5].

Reminder from calculus: Bolzano’s theorem says that if a real function F is continuous on a
bounded, closed interval a,b], then it takes all the values between F(a) and F(b).

The consequence of this theorem is that if F(a) is positive and F(b) is negative, then zero is an
intermediate value, so there is ξ between a and b, where the function takes zero, that is to say, ξ is
a solution of the equation F(x) = 0.

Using these facts, we can build an algorithm.
The pseudo code of the algorithm is the following.

Initialization: a,b,F , and

x0 = a, y0 = b, m0 =
x0 + y0

2

Step 1.: If F(mk) = 0, then mk is a solution. Otherwise Step 2.
Step 2.: Let

mk =
xk + yk

2
.

If F(xk)F(mk)< 0, then

xk+1 = xk, yk+1 = mk.

Otherwise,

xk+1 = mk, yk+1 = yk.

k = k+1. Step 1.
In practice, in the Initialization part we also give a positive ε , and we require |F(mk)| ≤ ε instead
of F(mk) = 0. It is also convenient to give the maximum number of steps in advance.
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0.5 1 1.5 2 2.5

-2

-1

0

1

2

3

4

5

Bisection method is applicable

Proposition 3.2.1 Besides the required condition of the bisection method, it is globally convergent,
and the rate of the convergence is linear.

� Example 3.9 Find an approximation of the root in the interval [0,1] of the polynomial F(x) =
x3−2x2− x+1!

This function is continuous, F(0) = 1 and F(1) =−1, so we can apply the bisection method.
Let x0 = 0, y0 = 1, then m0 =

1
2 , and

F(x0) = 1, F(m0) =
1
8
, F(y0) =−1.

F(y0)F(m0)< 0, so

x1 = m0 =
1
2
, m1 =

3
4
, y1 = y0 = 1,

and

F(x1) =
1
8
, F(m1) =−

29
64

, F(y1) =−1.

F(x1)F(m1)< 0, so

x2 = x1 =
1
2
, m2 =

5
8
, y2 = m1 =

3
4
,

and

F(x2) =
1
8
, F(m2) =−

83
512

, F(y2) =−
29
64

.
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Here

F(m2) =−
83
512
≈−0.0652, m2 = 0.625

which is an acceptable approximation of the root in the interval [0,1]. �

0.5 1

-1.5

-1

-0.5

0.5

1

The root of the polynomial F(x) = x3−2x2− x+1 in the interval [0,1].

Newton’s method in R
To get a better rate than the rate of the bisection method, we need the derivative of the function.
The price is the abated competency and local convergence instead of a global one.

For this purpose, let us use the first order Taylor expansion of F around x̄ a solution of the
problem (3.1). This gives the following linearized version of the problem

F(x) = F(x̄)+F ′(ξ )(x− x̄), (3.3)

where ξ is somewhere in between x and x̄.
Because x̄ is a solution of (3.1) F(x̄) = 0, after some rearrangement, assuming that F ′(ξ ) 6= 0,

we have

x̄ = x− F(x)
F ′(ξ )

for some ξ , which depends on x. Assuming continuity of the derivative, if x is not too far from x̄,
then the following expression is a reasonable approximation of the solution:

x̄≈ x− F(x)
F ′(x)

.
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This formula suggests the iteration scheme below.
Initialization: F, x0, and k = 0

Step 1.: If F(xk) = 0, then xk is a solution, otherwise Step 2.
Step 2.: Let

xk+1 = xk−
F(xk)

F ′(xk)
. (Newton iteration)

Step 1.
In practice, it is usual to initialize an error ε > 0 and the maximum number of steps n, and in the
first step it is better to check |F(xk)| ≤ ε instead of F(xk) = 0.

Newton’s method is usually quadratically convergent, but not globally convergent. It can happen
that the iteration is divergent if the starting point is too far from the solutions of the problem.

� Example 3.10 Find the approximate value of
√

2 using Newton’s method starting from x0 = 1!
Let

F(x) = x2−2.

Then
√

2 is a solution of F(x) = 0, which is "close" to 1. Because F ′(x) = 2x, we have the following
iteration.

x0 = 1

x1 = x0−
F(x0)

F ′(x0)
= 1− −1

2
=

3
2

x2 = x1−
F(x1)

F ′(x1)
=

3
2
−

1
4
3
=

17
12

x3 = x2−
F(x2)

F ′(x2)
=

17
12
−

1
144
17
6

=
577
408
≈ 1.414215

Here the first five digits are correct after the decimal dot. �

Theorem 3.2.2 — Properties of Newton’s method. Let F : R→ R be a continuously differ-
entiable function, x̄ ∈ R is a solution of (3.1), where the derivative is non-zero F ′(x̄) 6= 0. Then
there are ε > 0 and C > 0 constants such that
• x̄ is the unique solution of problem (3.1) in the interval ]x̄− ε, x̄+ ε[;
• |(F ′(x))−1| ≤C for all x ∈ |x− x̄| ≤ ε;
• for every x0 ∈]x̄− ε, x̄+ ε[ the Newton iteration either stops after finitely many steps on x̄

or results a superlinearly convergent sequence with limit x̄;
• if F ′ is a Lipschitz continuous function on the interval ]x̄−ε, x̄+ε[ with constant L, that is

|F ′(x)−F ′(y)| ≤ L|x− y|, x,y ∈]x̄− ε, x̄+ ε[,

then the rate of the convergence of Newton iteration is quadratic, that is

|xn+1− xn| ≤
CL
2
|xn− x̄|2, n ∈ N.

The proof is beyond the scoop of this note.
The most important part of the theorem is the fourth part, which says that Newton’s method is

locally convergent, and the rate is quadratic. Practically this means two new correct digits at every
steps of the iteration.
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Fixed-point iteration in R
This iteration is essentially applicable for problems of the form

T (x) = x. (3.4)

Definition 3.2.3 — Fixed-point. Let T : [a,b]→R be a function, where a < b are real numbers.
Then x̄ ∈ [a,b] is said to be a fixed-point of T if it is a solution of the equation (3.4).

� Example 3.11 Let us define the functions F,G : R→ R as F(x) = x, and G(x) = x+1. Then an
arbitrary real number is a fixed-point of F , and there is no fixed point of G. �

The previous example suggests a geometric interpretation of fixed-points. If x̄ is a fixed-point of a
function G, then its graph intersects the graph of the identity function F(x) = x at x̄.

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8
F(x)=x

G(x)=3sin(x)

The function G(x) = 3sin(x) has three fixed-points denoted by blue circles.

As the original problem (3.1) has a different form, it is needed to transform the fixed-point
problem (3.4) into a non-linear equation.

Let us assume that x̄ is a solution of the fixed-point problem (3.4), then x̄ is also a solution of
the non-linear equation

F(x) = 0,

where

F(x) = x−T (x).
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For some practical purposes, it is more convenient to use the transformation of the problem (3.1)
into a fixed-point problem using the following transformation:

T (x) = x−ωF(x),

where ω 6= 0 is a given constant.3

It is true that x̄ is a solution of (3.4) if and only if it is a solution of (3.1). Indeed, let x̄ be a
solution of the non-linear equation (3.1), then

T (x̄) = x̄−ωF(x̄) = x̄−ω ·0 = x̄,

that is, x̄ is a fixed-point of T .
Let us assume now, that x̄ is a fixed point of T , then

T (x̄) = x̄−ωF(x̄) ⇒ x̄ = x̄−ωF(x̄) ⇒ F(x̄) = 0.

So, x̄ is a solution of (3.1).
The method is applicable if T is a contraction with a factor between zero and one defined on a

compact4 interval of the real line.

Definition 3.2.4 — Contraction. Let T : [a,b]→ [a,b], then T is said to be a q-contraction if
there is a non-negative real number q such that

|T (x)−T (y)| ≤ q|x− y|, x,y ∈ [a,b].

[Contraction]

� Example 3.12 Let F(x) = x2−2, then with ω = 1
4 , the map

T (x) = x−ωF(x) = x− 1
4
(x2−2)

will be a contraction on the interval [1,2].
To prove this, let us apply the Lagrange’s mean value theorem.

|T (x)−T (y)| ≤ max
ξ∈[1,2]

|T ′(ξ )| · |x− y| ≤ 1
2
|x− y|, x,y ∈ [1,2].

Because

|T ′(ξ )|=
∣∣∣∣1− 1

2
ξ

∣∣∣∣≤ 1
2
, ξ ∈ [1,2].

�

In the definition, the assumption for the range of T is essential, namely, T is a self-map of the
compact interval [a,b].

Theorem 3.2.3 — Banach fixed-point theorem on R. Let T be a self-map of the compact
interval [a,b]. If T is a q-contraction with q < 1, then T has a unique fixed point, which is the
limit of the sequence {xn}n∈N, where x0 ∈ [a,b] arbitrary, and

xn+1 = T (xn), n ∈ N.

3This relaxed form of the transformation shows that Newton’s iteration is also a very special fixed-point iteration
with a sequence of parameters ωn =

1
F ′(xn)

.
4On the real line this is equivalent to boundedness and closedness, so, all intervals of the form [a,b] with −∞ < a≤

b < ∞ are compact.
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In the proof, we use the following facts from elementary Calculus.
Reminder from Calculus: A sequence {xn}n∈N is called a Cauchy sequence if for all ε > 0

there is a natural number N such that

|xn− xm| ≤ ε if n,m > N.

It is also well-known that real Cauchy sequences are convergent.

Proof. We prove that the resulted sequence of the iteration

xn+1 = T (xn), n ∈ N,

is a Cauchy sequence.
Firstly, let m be an arbitrary positive integer, then

|xm+1− xm|= |T (xm)−T (xm−1)| ≤ q|xm− xm−1|=

= |T (xm−1)−T (xm−2)| ≤ q2|xm−1− xm−2| ≤ · · · ≤ qm|x1− x0|.

Secondly, let m≤ n be arbitrary positive integers, then using the triangle inequality and the previous
estimate we have

|xn+1− xm+1|= |xn+1− xn + xn− xn−1 + xn−1−·· ·− xm+1 + xm+1− xm| ≤

≤ |xn+1− xn|+ |xn− xn−1|+ · · ·+ |xm+1− xm| ≤ qn−1|x1− x0|+ · · ·+qm|x1− x0|=

= (qn−1 + · · ·+qm)|x1− x0|=
qm+1−qn

1−q
|x1− x0|= qm+1 1−qn−m−1

1−q
|x1− x0| ≤

≤ qm+1 1
1−q

|x1− x0| −→ 0, as m−→ ∞.

This means that the resulted sequence is a Cauchy sequence, which is convergent. Let us denote the
limit by x̄. Then for every ε > 0 there is N ∈ N such that

|xn− x̄| ≤ ε, n≥ N.

Using this, we have the following estimate for n−1≥ N.

|T (x̄)− x̄|= |T (x̄)− xn + xn− x̄| ≤ |T (x̄)− xn|+ |xn− x̄|= |T (x̄)−T (xn−1)| ≤

≤ q|x̄− xn−1|+ ε ≤ qε + ε = (1+q)ε.

Because ε > 0 was arbitrary, we get

|T (x̄)− x̄|= 0,

which means that the limit of the sequence x̄ is a fixed point of T .
For the uniqueness assume that x̃ is also a fixed-point of T . Then

|x̃− x̄|= |T (x̃)−T (x̄)| ≤ q|x̃− x̄|,

this implies that q≥ 1, which is a contradiction. �

Using the previous theorem, we can build up a very simple globally convergent algorithm.
Fixed-point iteration algorithm:
Initialization: T, x0, ε, k = 0
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Step 1.: If |T (xk)− xk| ≤ ε , then we accept xk as a reasonable approximate solution, otherwise
Step 2.

Step 2.: Let

xk+1 = T (xk).

k = k+1, Step 1.
For some practical reasons, it is accustomed to give the maximum number of steps n.

Proposition 3.2.4 The rate of the convergence of the fixed-point iteration is linear.

Proof. Let x̄ be the limit of the iteration, then we get

|xn+1− x̄|= |T (xn)−T x̄| ≤ q|xn− x̄|.

Because of the assumption q < 1, we get the statement. �

� Example 3.13 Let us find an approximate value of
√

2 with fixed-point iteration.
We can use the map

T (x) = x− 1
4
(x2−2) =−1

4
x2 + x+

1
2
,

which is a contraction with q = 1
2 , as it was shown in the previous example. Then our iteration

results the following:

x0 = 1

x1 = T (x0) =
5
4

x2 = T (x1) =
87
64

x3 = T (x2) =
1505
1077

x4 = T (x3) =
1009
716

≈ 1.4092

The fourth iteration gives the first exact digit, which shows that this method is quite slow in general.
However, its global convergence and easy implementability makes it important not only from a
theoretical, but also from a practical point of view. �

3.2.3 Newton’s method
We assume in this section that F : Rn → Rn, and we shall continue to find the solution of the
equation F(x) = 0, which is practically a system of non-linear equations. Here we use the norm
instead of the absolute value. The essential difference between the multivariable and the one
variable case is the more complicated structure of sets.

In the one variable case, the ground of actions was an interval (at least in most of the cases).
However, in the multivariable case, more complicated sets can be important in applications. For the
sake of simplicity we will use multidimensional intervals (product of ordinary intervals) or balls.

The linearized version of the problem again has the form

F(x) = F(x̄)+F ′(ξ )(x− x̄),

where F(x), F(x̄), x, x̄ are vectors in Rn, F ′(ξ ) is an n by n matrix, which contains the partial
derivatives of the coordinate functions of F , and ξ is on the section determined by x and x̄. Using
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Graphical solution of the fixed-point equation T (x) = x− 1
4(x

2−2) = x.

that x̄ is a solution of (3.1), if the derivative matrix is invertible at ξ , then after rearrangement we
have

x̄ = x− (F ′(ξ ))−1F(x̄).

In a very similar way to the one variable case, we get the following iteration:
Initialization: F, x0, and k = 0

Step 1.: If F(xk) = 0, then xk is a solution, otherwise Step 2.
Step 2.: Let

xk+1 = xk− (F ′(xk))
−1F(xk). (Newton iteration)

Step 1.
It is also reasonable, just like in the one-dimensional case, to give the maximum number of steps n,
and a tolerance ε > 0. With the latter one, we require ‖F(xk)‖ ≤ ε instead of F(xk) = 0.

In practice, there is an other very important modification of the iteration scheme in the mul-
tivariable case. Calculation of the inverse matrix of the derivative (F ′(xk))

−1 is very costly. So,
instead of the formula in Step 2., we use the following one in practice:

F ′(xk)(xk− xk+1) = F(xk). (modified Newton iteration)

This is a system of linear equations for the unknown vector xk+1. Using the modified formula, we
have the following modified Newton algorithm:

Initialization: F, x0, F(x0), n, ε , and k = 0
Step 1.: If ‖F(xk)‖ ≤ ε or n≤ k, then stop with solution xk, otherwise Step 2.
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Step 2.: Let xk+1 be the unique solution (F ′(xk) is invertible) of the following system of linear
equations.

F ′(xk)(xk− xk+1) = F(xk). (modified Newton iteration) (3.5)

Step 1.

Theorem 3.2.5 — Properties of Newton’s method. Let F : Rn→Rn be a continuously differ-
entiable function, x̄ ∈ R be a solution of (3.1), where the derivative matrix F ′(x̄) is invertible.
Then there are ε > 0 and C > 0 constants such that
• x̄ is the unique solution of problem (3.1) in the ball Bε(x̄) = {x ∈ Rn| ‖x− x̄‖< ε };
• ‖(F ′(x))−1‖ ≤C for all x ∈ Bε(x̄);
• for every x0 ∈ Bε(x̄) the Newton iteration either stops after finitely many steps on x̄ or

results a superlinearly convergent sequence with limit x̄;
• if F ′ is a Lipschitz continuous function on the ball Bε(x̄) with constant L, that is

‖F ′(x)−F ′(y)‖ ≤ L‖x− y‖, x,y ∈ Bε(x̄),

then the rate of the convergence of Newton iteration is quadratic, that is

‖xn+1− xn‖ ≤
CL
2
‖xn− x̄‖2, n ∈ N.

The proof is beyond the scoop of this note.
Here, just like in the one-variable case, the most important part is the fourth one, which states

quadratic convergence of Newton’s method if the derivative is nice.

� Example 3.14 Let

F(x1,x2) =

[
x2

1−2x1x2
x2

2−3+ x1

]
.

Then

x̄ =
[

x1
x2

]
=

[
0√
3

]
is a solution of the equation F(x) = 0. The derivative of F is

F ′(x1,x2) =

[
2x1−2x2 −2x1

1 2x2

]
.

Let the starting point of the iteration be

x0 =

[
x0

1
x0

2

]
=

[
1
0

]
.

Find x1!
The function F and its derivative at x0 are

F(x0) =

[
1
−2

]
, F ′(x0) =

[
2 −2
1 0

]
,

and the corresponding linear system is[
2 −2
1 0

][
1− x1

1
0− x1

2

]
=

[
1
−2

]
,
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which is a system of linear equations, where the unknown is

x1 =

[
x1

1
x1

2

]
.

The solution of the linear system is

x1 =

[
x1

1
x1

2

]
=

[5
2
3

]
.

�

3.2.4 Fixed point iteration

Let M ⊂ Rn be a bounded, closed set5, and T : M→M be a map. Similarly to the one-variable
case, we examine the conditions under which the non-linear equation

T x = x, x ∈M, (3.6)

may be solved by successive approximation

xn+1 = T xn, x0 ∈M is arbitrary n = 0,1,2, . . . (3.7)

Definition 3.2.5 — Contraction. Let T M → M, where M ⊂ Rn, then T is said to be a q-
contraction if there is a non-negative real number q such that

‖T (x)−T (y)‖ ≤ q‖x− y‖, x,y ∈M.

Theorem 3.2.6 — Banach fixed-point theorem in Rn. If T is a q-contraction with a factor
0≥ q < 1 on a compact subset M of Rn, then it has a unique solution of (3.6), which is the limit
of the iteration (3.7).

Proof. Formally it is exactly the same as in the one-dimensional case, but here we use the norm of
vectors in Rn instead of the absolute value of real numbers. �

3.3 Interpolation

Interpolation is a type of approximation of a model function. The basis of the interpolation is the
observed (given) data, which are usually pairs (xi, fi), i = 0, . . . ,n, where xi 6= x j if i 6= j.

The first coordinates of the pairs are the nodes and the second coordinates are the observed
values.

The goal of the interpolation process is to find a function ϕ , which interpolates fi at xi, that is
to say,

ϕ(xi) = fi, i = 0, . . . ,n.

In this section our interpolation function will be a polynomial or a piecewise polynomial
function.

5According to the Heine-Borel theorem, this is equivalent to the compactness of M in this case.
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3.3.1 Lagrange interpolation
Here the interpolation function will be a polynomial with degree at most n. So, we are looking for
ϕ in the following form:

ϕ(x) = anxn + · · ·a1x+a0,

where an, . . . ,a1,a0 are real numbers. They depend on the observed data (xi, fi), i = 0,1, . . . ,n.
When we are looking for ϕ , the form above the corresponding problem is called Lagrange

interpolation problem.

Elementary Lagrange polynomials and the Lagrange polynomial
The Lagrange interpolation problem always have a unique, at most degree n solution.

Theorem 3.3.1 Let x0, . . . ,xn be given distinct nodes, and f0, . . . , fn be the corresponding ob-
served values. Then there is a unique polynomial with degree at most n Ln ∈Pn such that

Ln(xi) = fi, i = 0,1, . . . ,n.

Proof. This proof is a constructive one, that is to say, we give the form of the polynomial, which
fulfils the requirement of the theorem.

At first, we construct the elementary Lagrange polynomials. The form of the ith elementary
Lagrange polynomial depending on the given nodes is

li(x) =
n

∏
j=0
j 6=i

x− x j

xi− x j
, i = 0,1, . . . ,n.

The importance of li is that it takes 1 at xi and it takes 0 at x j, j 6= i. Indeed,

li(xi) =
n

∏
j=0
j 6=i

xi− x j

xi− x j
= 1,

and

li(xk) =
n

∏
j=0
j 6=i

xk− x j

xi− x j
= 0,

because there is a factor x j− x j = 0 in the nominator of the product above, when k = j.
The construction of the Lagrange interpolation polynomial is very easy now. It is just a certain

linear combination of the elementary Lagrange polynomials with coefficients of the observed data.
In detail, let

Ln(x) =
n

∑
i=0

fili(x).

Then the degree of Ln is at most n because it is a linear combination of polynomials of degree n.
Moreover, because of the definition of the elementary Lagrange polynomials, we have

Ln(xi) = fi, i = 0,1, . . . ,n.

So, Ln really interpolates the data.
The only remaining part is its uniqueness. If Ln is also a polynomial with degree at most n,

which interpolates the same data like Ln, then their difference polynomial Ln−Ln vanishes at
n+1 points (x0,x1, . . . ,xn), so this difference polynomial has at least n+1 different roots, and its
degree is at most n, which means that it must be the zero polynomial. This completes the proof. �
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The above construction of Ln is quite complicated, because of the tricky structure of the elementary
Lagrangian polynomials. Moreover, if we would like to augment a new data point, it is necessary
to reconstruct the whole interpolation polynomial executing the tiring calculation from the very
beginning.
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L
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l
2

Lagrange interpolation of the function 1
1+x2 on the interval [0,2] with three equidistant nodes

� Example 3.15 Let x0 = 0, x1 = 1, x2 = 2, and interpolate the function f (x) = 1
x2+1 . So, f0 =

1, f1 =
1
2 , f2 =

1
5 . See the figure above.

The elementary Lagrange polynomials are:

l0(x) =
(x− x1)(x− x2)

(x0− x1)(x0− x2)
=

(x−1)(x−2)
(0−1)(0−2)

=
1
2

x2− 3
2

x+1.

l1(x) =
(x− x0)(x− x2)

(x1− x0)(x1− x2)
=

(x−0)(x−2)
(1−0)(1−2)

=−x2 +2x.

l2(x) =
(x− x0)(x− x1)

(x2− x0)(x2− x1)
=

(x−0)(x−1)
(2−0)(2−1)

=
1
2

x2− 1
2

x.

So, we get

L2 = 1 ·l0(x)+
1
2
l1(x)+

1
5
l2(x) =

1
10

x2− 3
5

x+1.

�

It is possible to avoid these uncomfortable circumstances using Newton’s recursion, which will
be the topic of a later subsection.

Behaviour of Lagrange interpolation
Let us start with the estimation of the interpolation error. For this, we need the nodal polynomial
ωn+1, which vanishes at the nodes x0,x1, . . . ,xn.

ωn+1(x) =
n

∏
i=0

(x− xi).
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Theorem 3.3.2 — Error estimate. Using the earlier notations, let us denote by En(x) the error
of the interpolation at x, that is to say the difference between the interpolated function and the
Lagrange interpolation polynomial.

En(x) = f (x)−Ln(x).

If f is n+ 1 times continuously differentiable on the smallest interval which contains all the
nodes, then there is an element of this interval ξ such that

En(x) =
f (n+1)(ξ )

(n+1)!
ωn+1(x).

We do not prove this theorem.

Runge’s example for the bad behaviour of Lagrange interpolation

-4 -3 -2 -1 1 2 3 4

0.5

1

1.5

Figure 3.1: Lagrange interpolation of 1
1+x2 on the interval [−5,5] using equidistant nodes.

This theorem suggests the false thing that the Lagrange interpolation polynomial tends to nicely
to the interpolant if the number of nodes is increased.

Unfortunately the interpolation error can diverge as n tends to infinity. This phenomenon is
particularly evident in the neighborhood of the endpoints of the interval, as shown in Figure 3.1.
However, it is possible to choose the nodes in such a way which guarantee uniform convergence on
the whole interpolation interval. For further information see [QSS2007] and [BP1978].
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Newton’s recursion
From a practical aspect, the previous construction of Lagrangian interpolation polynomial using
elementary Lagrange polynomials is not the best choice. It is too complicated and its computational
cost is too expensive. The goal of this subsection is to get rid of these inconveniences, and give a
recursive method, which is more transparent, and its computational cost is cheaper.

If we fix a set of nodes x0, . . . ,xn and observed data f0, . . . , fn, then the corresponding Lagrange
polynomial Ln can be written as the sum of the Lagrange polynomial Ln−1 and a polynomial with
degree at most n. Let us denote it qn, that is to say

Ln =Ln−1 +qn ⇒ qn(x) =Ln(x)−Ln−1(x).

Using their definitions, we have

qn(xi) =Ln(xi)−Ln−1(xi) = fi− fi = 0, i = 0,1, . . . ,n−1.

So, qn is a scalar multiply of the nodal polynomial ωn, that is,

qn(x) = an(x− x0)(x− x1) · · ·(x− xn−1) = anωn(x)

for some constant an. This entails the formula

an =
qn(xn)

ω(xn)
=

fn−Ln−1(xn

ωn(xn)
=: f [x0, . . . ,xn]

Definition 3.3.1 — Divided differences. The coefficient

f [x0, . . . ,xn]

in the formula above is said to be the nth Newton divided difference.

More precisely it is the nth Newton divided difference of the function f with respect to the points
x0, . . . ,xn. This is too lengthy, so, in practice, we use the shorter name without the specification of
the function and the base points if there is no ambiguity.

The advantage of these differences is clear from the definition of qn. Indeed,

Ln =Ln−1 +qn =Ln−1 + f [x0, . . . ,xn]ωn(x).

This implies the following expression for Ln.

Ln(x) =
n

∑
k=0

f [x0, . . . ,xk]ωk(x) =
n

∑
k=0

akωk(x) = a0+a1(x−x0)+ · · ·+an(x−x0) · · ·(x−xn−1).

So, if we know all the coefficients (the divided differences), we have explicit formula for the
Lagrange interpolation polynomial.

Luckily, these coefficients can be determined in an easy, recursive way.

Theorem 3.3.3

f [x0, . . . ,xn] =
f [x1, . . . ,xn]− f [x0, . . . ,xn−1]

xn− x0
.

Proof. Hint: Prove at first the formula:

Ln(x) =
n

∑
i=0

ωn+1(x)
(x− xi)ω ′n(xi)

fi.
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Using this and the expression Ln(x) = ∑
n
k=0 f [x0, . . . ,xk]ωk(x), prove the following formula:

f [x0, . . . ,xn] =
n

∑
i=0

fi

ω ′n+1(xi)
.

This last expression, after some algebraic manipulation, gives the statement. �

According to the recursion given by the theorem above, the required coefficients are contained by
the diagonal boxed entries of the following tableau:

x0 f0 = f [x0]

x1 f1 = f [x1] f [x0,x1]

x2 f2 = f [x2] f [x1,x2] f [x0,x1,x2]
...

...
...

...
xn fn = f [xn] f [xn−1,xn] f [xn−2,xn−1,xn] . . . f [x0, . . . ,xn]

The corresponding interpolation polynomial will be

Nn(x) = f [x0]+ f [x0,x1](x− x0)+ · · ·+ f [x0, . . . ,xn](x− x0) · · ·(x− xn).

� Example 3.16 Let us find the Lagrange interpolation polynomial, which interpolates the data
below.

xi 0 1 2 3 4
fi 1 2 −1 2 3

Using the Newton recursion, we have the following divided difference tableau:

0 1
1 2 1
2 −1 −3 −2

3 2 3 3 −5
3

4 3 1 1 −2
3 − 7

12

The corresponding Newton polynomial will be (see the figure below)

N4(x) = 1+ x−2x(x−1)+
5
3

x(x−1)(x−2)− 7
12

x(x−1)(x−2)(x−3).

�

3.4 Least square approximation
Like in the case of interpolation, here we have a given data t1, . . . , tn, which usually (not always)
denote (not necessarily different) time instants and f1, . . . , fn are the observed values of the model.
Here we are looking for a simple function "close" to the given data.

In the case of interpolation, the complexity of the interpolation function was determined by the
number of the data. Namely, n+1 nodes imply interpolation at most degree n. It was seen that this
number cannot be less besides the requirements Ln(xi) = fi.

Here we do not require exact interpolation of the data at the nodes, therefore the reward is a
simpler approximation function.
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N4(x) = 1+ x−2x(x−1)+ 5
3 x(x−1)(x−2)− 7

12 x(x−1)(x−2)(x−3)

Actually, it is necessary to give a set of functions, which highly depends on the data itself.
For example, if we have a periodic data, it is convenient to give a set of periodic functions. The
approximation will be a certain linear combination of the elements of the given set. The coefficients
are given as a solution of a linear system (Gaussian normal equation), which can be constructed
with the aid of the data and the set of the given functions.

To avoid sensitivity of the model, with respect to translations along the y axis, it is always
reasonable to take the constant one function into the set of the given functions.

3.4.1 Linear case
First we deal with the simplest case, when our set of functions contains only two maps, besides the
constant one function the identity function. So, the approximation function will have the form

F(t) = x1 + x2t.

This case deserves a special interest, because it has a great use and significant importance in very
different parts of mathematics, applied mathematics and other sciences as well.

The main question now is, how to determine the exactness of the approximation, in other words,
what the approximation is "close" enough to the model means.

We will measure the sum of the squares of the discrepancies between the model and the
approximation, and we will minimize this sum at last. This is where the name of the process comes
from. In detail, let us find the following minimum:

min
x1,x2

J(x1,x2) =
n

∑
i=1

(F(ti)− fi)
2 =

n

∑
i=1

(x1 + x2ti− fi)
2. (3.8)
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J is a convex, differentiable function. It is known, that a function like this has a global minimum
at points where its derivative is zero.

Let us calculate the partial derivatives and make them equal to zero. At last we get a linear sys-
tem, which is called the Gaussian normal equation, whose solution gives the required parameters
x1 and x2.

J(x1,x2)

∂x1
= 2

n

∑
i=1

(x1 + x2ti− fi) = 0, and
J(x1,x2)

∂x2
= 2

n

∑
i=1

(x1 + x2t− fi)ti = 0.

The resulted linear system is:[
n ∑

n
i=1 ti

∑
n
i=1 ti ∑

n
i=1 t2

i

][
x1
x2

]
=

[
∑

n
i=1 fi

∑
n
i=1 ti fi

]
Introducing the notations

A =

1 t1
...

...
1 tn

 , f =

 f1
...
fn


we have the following form for the Gaussian normal equation:

AT Ax = AT f , where x =
[

x1
x2

]
. (3.9)

� Example 3.17 Let us find the line, which is the closest one to the following data in the least
square sense!

ti 0 0.1 0.1 0.3 0.4 0.4 0.6 0.7 0.8 0.9 1
fi 1 1.1 1.2 1.1 1.8 1.85 2.6 1.7 2 2 1.95

Then

A =



1 1
1 0.1
1 0.1
1 0.3
1 0.4
1 0.4
1 0.6
1 0.7
1 0.8
1 0.9
1 1



, and f =



1
1.1
1.2
1.1
1.8

1.85
2.6
1.7
2
2

1.95



.

The corresponding Gaussian normal equation and its solution are

AT Ax =
[

11 5.3
5.3 3.75

][
x1
x2

]
= AT f =

[
18.3
10.12

]
, and x =

[
1.1301
1.1074

]
.

�
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Solution of Example 3.17

Solvability of the Gaussian normal equation
We require a unique solution of the Gaussian normal equation, otherwise there is unwelcome
doubtfulness in our model. An inhomogeneous linear system, like the normal equation, has a
unique solution if and only if the matrix AT A is non-singular, in other words, the square matrix
AT A is invertible.

If not all the tis are equal, then the Gaussian normal equation always have a unique
solution in the linear case!

It is very important to emphasize the fact that this is only true in the linear case. We will see in
the next subsection that the situation is a little bit more subtle if the model function is non-linear.

3.4.2 General case
Like in the linear case, let us assume that we have the given data t1, . . . , tn and f1, . . . , fn. We are
looking for the model function now in the form

F(t) = x1ϕ1(t)+ · · ·+ xmϕm(t) =
m

∑
i=1

xiϕi(t),

where ϕi, i = 1, . . . ,m are given functions, and xi, i = 1, . . . ,m are the unknown parameters.
Let us observe that this case contains the linear one. Indeed, with the choices ϕ1(t) = 1 and

ϕ2(t) = t, we have F(t) = x1ϕ1(t)+ x2ϕ2(t) = x1 ·1+ x2 · t = x1 + x2t, which is really the linear
model.

The unknown parameter vector xT =
[
x1 . . . xm

]
arises as the solution of the Gaussian

normal equation of the problem. This system can be derived in a pretty similar way, like in the
linear case.
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Definition 3.4.1 — Gaussian normal equation. Let us introduce the notations below

A =

ϕ1(t1) . . . ϕm(t1)
... · · ·

...
ϕ1(tn) . . . ϕm(tn)

 , f =

 f1
...
fn


then the following system of linear equations is said to be the Gaussian normal equation of
the problem.

AT Ax=AT f , where xT =
[
x1 . . . xm

]
is the unknown parameter vector. (3.10)

� Example 3.18 Let us consider the following data.

ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fi −1 −0.4 0 0.1 0.8 1.02 0.2 −0.31 −0.45 −1 −1.2

This data has a "periodic nature" at the first view, it is reasonable to choose a different model
than the linear one. As it is seen on Figure 3.2, the line, which is the best one in the lest square
sense, is rather far from the data.

Let

ϕ1(t) = 1, ϕ2(t) = cos(πt), ϕ3(t) = cos(2πt).

Then the Gaussian normal equation of the problem is

AT Ax =

11 0 1
0 6 0
1 0 6

x1
x2
x3

AT f =

 −2.24
1.5611
−5.2358

 .
The solution of the system is

x =

x1
x2
x3

=

−0.1262
0.2602
−0.8516

 .
So, the model function is

F(t) = x1 + x2 cos(πt)+ x3 cos(2πt) =−0.12621+0.2602cos(πt)−0.8516cos(2πt).

It is clear (see Figure 3.2) that this non-linear model fits much better than the linear one. �

Solvability of the Gaussian normal equation in the non-linear case

Like in the linear case, a unique solution of the Gaussian normal equation is required. Otherwise
the resulted model function F is not unique and it has no use.

Uniqueness is ensured by the non-singularity of the matrix AT A. If it is not the case, then we
either have too many functions in the model or we have not enough data.

In the first case, we have to reduce the number of ϕis, in the second case, we have to perform
more observations for the sake of the enlargement of the data set.
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Figure 3.2: Solution of Example 3.18

3.5 Numerical integration
Let f : [a,b]→ R be integrable, where [a,b] is a proper, finite interval. We intend to find the value
of the integral6

I( f ) =
b∫

a

f (x)dx.

Even if the Newton-Leibniz formula is applicable, it is not easy to find the exact value of this
integral.

We are looking for formulae, which provide an approximation of I( f ).
We will consider only one-dimensional integrals over bounded intervals. The interested reader

can find more information about the approximation of multi-dimensional and indefinit integrals in
[Kre1988] and in [QSS2007].

The basic idea of numerical integration is to divide the interval [a,b] into pieces (taking a
set of nodes), and substituting the function f with an approximation on the subintervals. This
approximation function should be easily integrable, for example a polynomial (like the Lagrange
interpolation polynomial) seems to be a good choice from this point of view. After summation of
the approximate integrals over the whole interval, we get an approximation of I( f ) as well.

Several technically and theoretically difficult questions are popping up during this process. So,
here we deal only with the most elementary three quadrature rules (approximation formulae for
I( f )).

6The value of I( f ) depends on the interval [a,b]. However, if there is no ambiguity, we use this short notation instead
of the more correct one I( f ,a,b).
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To reach our designated goal, we use the integral of the Lagrangian interpolation polynomial of
degree zero, one or two of the function in question. Depending on the degree of the interpolation
polynomial, we use the notation I0( f ), I1( f ) and I2( f ) respectively for the resulted approximate
value of the integral.

3.5.1 The Midpoint formula
This quadrature rule is obtained by approximating f with the constant function equal to the value
attained by f at the midpoint of the interval (see Figure 3.3), that is to say,

I0( f ) = (b−a) f
(

a+b
2

)
.

0.2 0.4 0.6 0.8 1

-0.1

0.1

0.2

0.3

0.4

Figure 3.3: Numerical integration over the interval [0,1] using midpoint rule

If f is two times continuously differentiable, then we have the following error estimate.

|I0( f )− I( f )| ≤ (b−a)3

24
max

x∈[a,b]
| f ′′(x)|.

From the estimation above, it follows that the Midpoint formula is exact for polynomials with
degree at most one. Indeed, in this case the second derivative of the function is zero, so we have
zero error on the right hand side of the previous inequality.

Actually, one can derive this by direct calculation in the following way. Let f (x) = αx+β be a
polynomial with degree one, and [a,b] a bounded interval. Then the exact integral is

I( f )=
b∫

a

f (x)dx=
b∫

a

(αx+β )dx=
[

α
x2

2
+βx

]b

a
=

α

2
(b2−a2)+β (b−a)= (b−a)

(
α

b+a
2

+β

)
.
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The approximation of the integral with the Midpoint formula is

I0( f ) = (b−a) f
(

a+b
2

)
= (b−a)

(
α

b+a
2

+β

)
.

So,

I( f ) = I0( f )

if f is a polynomial with degree at most one.

� Example 3.19 Let f (x) = sin(x), and [a,b] = [0, π

2 ]. Then

I( f ) =

π

2∫
0

sin(x)dx = [−cos(x)]
π

2
0 = 1,

I0( f ) =
(

π

2
−0
)

sin
(

π

4

)
=

√
2π

4
≈ 1.1107.

The estimated error is(
π

2

)3

24
max

x∈[0,π2

]|− sin(x)|= π3

192
≈ 0.1615,

which is greater than 0.1107 (the difference of the exact and the approximated value of the integral).
�

3.5.2 The Trapezoidal formula
This formula is obtained by replacing f with its Lagrangian interpolation polynomial of degree one
over the interval.

The corresponding quadrature rule is

I1( f ) =
b−a

2
( f (a)+ f (b)).

It is worthy to mention that I1( f ) is the area of the trapezoidal determined by the points (a,0),
(a, f (a)), (b, f (b)), (b,0).

If f is two times continuously differentiable, then we have the following error estimate.

|I1( f )− I( f )| ≤ (b−a)3

12
max

x∈[a,b]
| f ′′(x)|.

As a consequence of the error estimate, we have that the Trapezoidal formula, like the midpoint
formula, is exact for polynomials with degree at most one. The proof is also similar to the case of
midpoint formula, so, we omit it.

� Example 3.20 Let f (x) = sin(x), and [a,b] = [0, π

2 ]. Then

I( f ) =

π

2∫
0

sin(x)dx = [−cos(x)]
π

2
0 = 1,

I1( f ) =
π

2 −0
2

(
sin π

4 + sin0
)
=

π

4
≈ 0.7854.
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Figure 3.4: Numerical integration over the interval [0,1] using trapezoidal rule

The estimated error is(
π

2

)3

12
max

x∈[0,π2

]|− sin(x)|= π3

96
≈ 0.323,

which is greater than 1−0.7854 = 0.2146 (the difference of the exact and the approximated value
of the integral). �

3.5.3 The Simpson formula
This formula can be derived by replacing f over [a,b] with its interpolation polynomial of degree 2.
The rule is the following:

I2( f ) =
b−a

6

(
f (a)+4 f

(
a+b

2

)
+ f (b)

)
.

If f is four times continuously differentiable, then we have the following error estimate.

|I2( f )− I( f )| ≤ (b−a)5

2880
max

x∈[a,b]
| f (iv)(x)|.

This estimate shows that the Simpson formula is exact for polynomials with degree at most 3.

� Example 3.21 Let f (x) = sin(x), and [a,b] = [0, π

2 ]. Then

I( f ) =

π

2∫
0

sin(x)dx = [−cos(x)]
π

2
0 = 1,
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I2( f ) =
π

2 −0
6

(
sin

π

2
+4sin

π

4
sin0

)
=

π

12
(1+2

√
2)≈ 1.0023

The estimated error is(
π

2

)5

2880
max

x∈[0,π2

]|− cos(x)|= π5

2880
≈ 0.0033,

which is greater than 1.0023−1 = 0.0023 (the difference of the exact and the approximated value
of the integral). �

3.6 Basic optimization algorithms

Let f : Rn→ R be a given function. We are looking for a vector x̄ ∈ Rn, which is a solution of the
following minimization problem:

min
x∈Rn

f (x), (3.11)

that is to say,

f (x̄)≤ f (x), for every x ∈ Rn.

This problem is called a global minimization problem. In general it is hard to solve it. Here we
always assume that f is differentiable in a certain order.

Even in the smooth case, without further knowledge about the objective function f , we have
chance to find only a local solution instead of a global one.

It is known, that if f has a local minima at x̄ then its derivative is zero there. So, looking for a
minima of a differentiable function can be transferred to the solution of the non-linear system7 of
equations:

f ′(x) = 0.

As a consequence of this simple observation, we have that all the numerical methods for solving
such systems can be applied for numerical solution of optimization problems.

Bisection method can be applied only for one-dimensional optimization problems. Newton’s
method, and Banach iteration can also be applied for multi-dimensional optimization problems.

� Example 3.22 Let us find the minimum of the function

f (x) = ex + x2.

Its derivative is

f ′(x) = ex +2x.

As it is seen in Figure 3.5 the global minimum8 of this function is around −0.3. So we have to
solve the following non-linear equation.

ex +2x = 0.

7The derivative f ′(x) is a vector of Rn if f is defined on Rn.
8This function is strictly convex, so, it has at most one global minimum point. It is also known that if it has a

stationary point, then this is a global minimum place of the function as well.
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Figure 3.5: The function f (x) = ex + x2 and its derivative

Because f is a one-variable one, we can apply all the learned methods, namely, Bisection
method, Newton’s method, and Banach iteration.

Let us solve this problem using Newton’s method.
According to the figure x0 = 0 is an acceptable starting point. Our function is F(x) = f ′(x) =

ex +2x. Its derivative is F ′(x) = ex +2. The first three iterations, and the corresponding value of F
and f are

k xk f (xk) f ′(xk)

0 0 1 1
1 −0.3333 0.8276 0.0499
2 −0.3517 0.8272 0.00011998

Practically the global minimum place is x̄ =−0.3517. �

Here we deal only with one additional method, with the basics of gradient method or steepest
descent method. The interested can find more material in the excellent book about numerical
optimization [NW2006].

3.6.1 Steepest descent method

This method is a typical line search type method. This means the following. We pick up a point
x0 ∈ Rn, choose a direction d0 ∈ Rn, and try to minimize f along the half-line x0 +αd0. So we are
looking for an α0, which is the solution of the minimization problem:

min
α≥0

f (x0 +αd0).



3.6 Basic optimization algorithms 111

The next iteration will be

x1 = x0 +α0d0.

In general, the k+1th iterate will be:

xk+1 = xk +αkdk.

We continue this process still we have an iterate where the derivative of f is zero.
Two questions are popping up immediately. How can we choose the direction dk, and how can

we choose the step length αk in the kth iteration?9

The choice of the direction
There are several possibilities in the literature for the choice of the direction. Probably the best
known direction is the steepest descent direction. This vector is resulted by the quite reasonable
strategy, find that direction at a point from where one can go down in the fastest way. In other
words, choose that direction, which has the biggest negative slope.

Definition 3.6.1 — Steepest descent direction. Let f : Rn→ R be a differentiable function.
The solution of the problem (if there exists)

min
‖d‖=1

f ′(x)T d (3.12)

is called a steepest descent direction of f at x.

This definition makes sense in a pretty large class of functions as the next theorem says.

Theorem 3.6.1 Let f : Rn → R be a differentiable function. If f ′(x) 6= 0, then the problem
(3.12) has a unique solution, which is given by the formula

d =− f ′(x)
‖ f ′(x)‖

.

Proof. Let d be an arbitrary vector with norm one. From the Cauchy-Schwarz inequality we have

− f ′(x)T d ≤ |− f ′(x)T d| ≤ ‖− f ′(x)‖ · ‖d‖= ‖ f ′(x)‖ ⇒ f ′(x)T d ≥−‖ f ′(x)‖.

Equality if and only if, when − f ′(x) and d are linearly dependent, that is to say, there is a scalar α

different from zero for which d =−α f ′(x). Because ‖d‖= 1, we have the statement. �

The choice of the step length
For the step length, the best choice is the solution of the problem

min
α≥0

f (x+αd).

However, its computational cost is too much.
It is reasonable to choose a numerically cheaper algorithm, which matches to the following two

requirements:
• it gives sufficiently large decrease in the objective function during the resulted iteration step,
• it is long enough to ensure sufficient progress toward a local minimum.

The following rule complies with both the above prerequisites.

9The starting point x0 can be chosen arbitrarily.
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Definition 3.6.2 — Goldstein condition. Let f : Rn→ R be a differentiable function, x ∈ Rn

is a point where the derivative of f is different from zero, and d be the steepest descent direction
at x. A step size α fulfils the Goldstein conditions if

f (x)+(1− c)α f ′(x)td ≤ f (x+αd)≤ f (x)+ cα f ′(x)T d, (3.13)

where c ∈]0,0.5[ is fixed in advance.
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3.7 Exercises
Exercise 3.1 Give the floating point representation of the following numbers if a = 2, t = 4,
l =−2, and u= 3.

0.25a) 0.125b) −2.5c)

1
3d) 1

7e) 1
8f)

�

Exercise 3.2 Give the smallest, and the largest representable numbers, the machine epsilon, and
the number of the positive representable floating-point numbers besides the given data below.

a = 2, t = 4, l =−2, and u= 3a) a = 2, t = 5, l =−2, and u= 2b)

a = 2, t = 4, l =−4, and u= 4c) a = 2, t = 3, l =−2, and u= 2d)

�

Exercise 3.3 Find the approximate solution of the non-linear equations below, using Bisection
method, Fixed-point iteration, and Newton’s method in the given interval.

sin(x) = 0.5x, x ∈ [1,2]a)

ex = 2x, x ∈ [0,1]b)

x3− x2 +1 = 0, x ∈ [−1,0]c)

�

Exercise 3.4 Find the Lagrangian polynomial, which interpolates the given data.

(−3,−6),(−2,−17),(−1,−8),(1,−2),(2,19)a)

(−3,−31),(−2,−8),(1,1),(2,22)b)

(−2,13),(−1,−4),(1,2)c)

(−2,−5),(−1,3),(0,1),(2,15)d)

(−1,4),(1,2),(2,10),(2,15)e)

(−2,38),(−1,5),(1,−1),(2,−10),(3,−7)f)

�

Exercise 3.5 Find the line, which fits the best in least square sense to the following data.
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ti 1 2 3 4 5
fi 1 0 2 -1 1

a)

ti 0 0.2 0.4 0.5
fi 1 1.1 1.2 1.3

b)

�

Exercise 3.6 Find the function in the given form, which fits the best in least square sense to the
following data.

ti -1 -0.5 0 0.5 1
fi 1 0 -1.5 0.3 1

, F(t) = x1 + x2 sin(πt)

a)

ti 0.1 0.5 1.2 1.5 1
fi -0.6 1.5 2.5 2.9 1

, F(t) = x1 + x2 log(t)

b)

�

Exercise 3.7 Find the exact value and the numerical approximation of the following integrals
using Midpoint formula, Trapezoidal formula, and Simpson formula. Give an estimation for the
error for all the three cases.

∫ π

2

− π

2

xsin(x2)dx

a)

1∫
0

x5−x4+3x2+1dx

b)

1∫
−1

√
1− x2dx

c)

�
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